forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrelative_attention_test.py
189 lines (167 loc) · 6.54 KB
/
relative_attention_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for the attention layer."""
from absl.testing import parameterized
import numpy as np
import tensorflow as tf, tf_keras
from tensorflow.python.distribute import combinations
from official.nlp.modeling.layers import relative_attention
def _create_mock_attention_data(
num_heads,
key_dim,
value_dim,
seq_length,
batch_size,
memory_length=0,
num_predictions=2,
two_stream=False,
include_state=False,
include_mask=False,
include_segment=False):
"""Creates mock testing data.
Args:
num_heads: `int`, Number of attention heads.
key_dim: `int`, Size of query head.
value_dim: `int`, Size of key, value dim.
seq_length: `int`, Sequence length of the input.
batch_size: `int`, the batch size.
memory_length: optional `int`, the length of the state. Defaults to 0.
num_predictions: `int`, the number of predictions used in two stream
attention.
two_stream: `bool`, whether or not to generate two stream data.
include_state: optional `bool`, whether or not to include state data.
include_mask: optional `bool`, whether or not to include mask data.
include_segment: optional `bool`, whether or not to include segment data.
Returns:
A dictionary with `str` as keys and `Tensor` as values.
"""
query_shape = (batch_size, seq_length, key_dim)
value_shape = (batch_size, seq_length, value_dim)
encoding_shape = (batch_size, seq_length * 2, key_dim)
attention_bias_shape = (num_heads, key_dim)
data = dict(
relative_position_encoding=tf.random.normal(shape=encoding_shape),
content_attention_bias=tf.random.normal(shape=attention_bias_shape),
positional_attention_bias=tf.random.normal(shape=attention_bias_shape))
if two_stream:
query_stream_shape = (batch_size, num_predictions, key_dim)
target_mapping_shape = (batch_size, num_predictions, seq_length)
stream_data = dict(
content_stream=tf.random.normal(shape=query_shape),
query_stream=tf.random.normal(shape=query_stream_shape),
target_mapping=tf.random.normal(shape=target_mapping_shape))
else:
stream_data = dict(
query=tf.random.normal(shape=query_shape),
value=tf.random.normal(shape=value_shape),
key=tf.random.normal(shape=value_shape))
data.update(stream_data)
if include_state:
total_seq_length = seq_length + memory_length
state_data = dict(
state=tf.random.normal(shape=(batch_size, memory_length, value_dim)))
data.update(state_data)
else:
total_seq_length = seq_length
if include_mask:
mask_shape = (batch_size, num_heads, seq_length, total_seq_length)
mask_data = np.random.randint(2, size=mask_shape).astype("float32")
if two_stream:
mask_data = dict(
content_attention_mask=mask_data,
query_attention_mask=mask_data)
else:
mask_data = dict(attention_mask=mask_data)
data.update(mask_data)
if include_segment:
segment_encoding_shape = (2, num_heads, key_dim)
segment_matrix = np.random.randint(
2, size=(batch_size, seq_length, total_seq_length))
segment_matrix = tf.math.equal(segment_matrix, 1)
segment_data = dict(
segment_attention_bias=tf.random.normal(shape=attention_bias_shape),
segment_encoding=tf.random.normal(shape=segment_encoding_shape),
segment_matrix=segment_matrix)
data.update(segment_data)
return data
class MultiHeadRelativeAttentionTest(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(combinations.combine(
value_dim=[32, 64],
memory_length=[0, 4],
state=[True, False],
mask=[True, False],
segment=[True, False]))
def test_attention_scores(self,
value_dim,
memory_length,
state,
mask,
segment):
"""Tests combinations of attention score calculations."""
batch_size, num_heads, key_dim, seq_length = 2, 12, 64, 8
test_layer = relative_attention.MultiHeadRelativeAttention(
num_heads=num_heads,
key_dim=key_dim,
value_dim=value_dim)
data = _create_mock_attention_data(
num_heads=num_heads,
key_dim=key_dim,
value_dim=value_dim,
seq_length=seq_length,
memory_length=memory_length,
two_stream=False,
batch_size=batch_size,
include_state=state,
include_mask=mask,
include_segment=segment)
output = test_layer(**data)
self.assertEqual(output.shape, [batch_size, seq_length, key_dim])
class TwoStreamRelativeAttentionTest(tf.test.TestCase, parameterized.TestCase):
@combinations.generate(combinations.combine(
num_predictions=[2, 10],
memory_length=[0, 4],
state=[True, False],
mask=[True, False],
segment=[True, False]))
def test_attention_scores(self,
num_predictions,
memory_length,
state,
mask,
segment):
"""Tests combinations of attention score calculations."""
batch_size, num_heads, key_dim, seq_length = 2, 12, 64, 8
test_layer = relative_attention.TwoStreamRelativeAttention(
num_heads=num_heads,
key_dim=key_dim,
value_dim=key_dim)
data = _create_mock_attention_data(
num_heads=num_heads,
key_dim=key_dim,
value_dim=key_dim,
seq_length=seq_length,
memory_length=memory_length,
num_predictions=num_predictions,
two_stream=True,
batch_size=batch_size,
include_state=state,
include_mask=mask,
include_segment=segment)
content_output, query_output, = test_layer(**data)
self.assertEqual(content_output.shape, [batch_size, seq_length, key_dim])
self.assertEqual(query_output.shape, [batch_size, num_predictions, key_dim])
if __name__ == "__main__":
np.random.seed(0)
tf.random.set_seed(0)
tf.test.main()