forked from siemens1313/super_resolution_ultrasound
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcgan_res50.py
411 lines (334 loc) · 15.7 KB
/
dcgan_res50.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from __future__ import division, print_function, absolute_import
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.core import Flatten
from keras.optimizers import SGD
from keras.datasets import mnist
import numpy as np
from PIL import Image
import argparse
import math
from keras.utils import np_utils
import os
from numpy import *
from sklearn.utils import shuffle
from sklearn.cross_validation import train_test_split
def identity_block(X, f, filters, stage, block):
"""
Implementation of the identity block as defined in Figure 3
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
f -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
block -- string/character, used to name the layers, depending on their position in the network
Returns:
X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
"""
# defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# Retrieve Filters
F1, F2, F3 = filters
# Save the input value. You'll need this later to add back to the main path.
X_shortcut = X
# First component of main path
X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
### START CODE HERE ###
# Second component of main path (≈3 lines)
X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X)
# Third component of main path (≈2 lines)
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
# Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
X = Add()([X_shortcut, X]) # equivalent to added = keras.layers.add([x1, x2])
X = Activation('relu')(X)
### END CODE HERE ###
return X
# GRADED FUNCTION: convolutional_block
def convolutional_block(X, f, filters, stage, block, s = 2):
"""
Implementation of the convolutional block as defined in Figure 4
Arguments:
X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
f -- integer, specifying the shape of the middle CONV's window for the main path
filters -- python list of integers, defining the number of filters in the CONV layers of the main path
stage -- integer, used to name the layers, depending on their position in the network
block -- string/character, used to name the layers, depending on their position in the network
s -- Integer, specifying the stride to be used
Returns:
X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
"""
# defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
# Retrieve Filters
F1, F2, F3 = filters
# Save the input value
X_shortcut = X
##### MAIN PATH #####
# First component of main path
X = Conv2D(F1, kernel_size=(1, 1), strides = (s,s),padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
### START CODE HERE ###
# Second component of main path (≈3 lines)
X = Conv2D(F2,kernel_size= (f, f), strides = (1,1),padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X)
# Third component of main path (≈2 lines)
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X)
##### SHORTCUT PATH #### (≈2 lines)
X_shortcut = Conv2D(filters = F3, kernel_size = (1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut)
# Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
X = Add()([X_shortcut, X]) # equivalent to added = keras.layers.add([x1, x2])
X = Activation('relu')(X)
### END CODE HERE ###
return X
# GRADED FUNCTION: ResNet50
def ResNet50(input_shape = (64, 64, 3), classes = 6):
"""
Implementation of the popular ResNet50 the following architecture:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
-> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER
Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes
Returns:
model -- a Model() instance in Keras
"""
# Define the input as a tensor with shape input_shape
X_input = Input(input_shape)
# Zero-Padding
X = ZeroPadding2D((3, 3))(X_input)
# Stage 1
X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3, 3), strides=(2, 2))(X)
# Stage 2
X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c')
### START CODE HERE ###
# Stage 3 (≈4 lines)
X = convolutional_block(X, f = 3, filters = [128,128,512], stage = 3, block='a', s = 2)
X = identity_block(X, 3, [128,128,512], stage=3, block='b')
X = identity_block(X, 3, [128,128,512], stage=3, block='c')
X = identity_block(X, 3, [128,128,512], stage=3, block='d')
# Stage 4 (≈6 lines)
X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2)
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e')
X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f')
# Stage 5 (≈3 lines)
X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2)
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b')
X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c')
# AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
X = AveragePooling2D(pool_size=(2, 2), strides=None, padding='valid',name='avg_pool' )(X)
### END CODE HERE ###
# output layer
X = Flatten()(X)
X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
# Create model
model = Model(inputs = X_input, outputs = X, name='ResNet50')
return model
def generator_model():
model = Sequential()
model.add(Dense(input_dim=100, output_dim=1024))
model.add(Activation('tanh'))
# model.add(Dense(128*7*7))
model.add(Dense(128*64*64))
model.add(BatchNormalization())
model.add(Activation('tanh'))
# model.add(Reshape((7, 7, 128), input_shape=(128*7*7,)))
model.add(Reshape((64, 64, 128), input_shape=(128*64*64,)))
model.add(UpSampling2D(size=(2, 2)))
model.add(Conv2D(64, (5, 5), padding='same'))
model.add(Activation('tanh'))
model.add(UpSampling2D(size=(2, 2)))
model.add(Conv2D(1, (5, 5), padding='same'))
model.add(Activation('tanh'))
return model
def discriminator_model():
model = Sequential()
model.add(
Conv2D(64, (5, 5),
padding='same',
# input_shape=(28, 28, 1))
input_shape=(256, 256, 1))
)
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (5, 5)))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('tanh'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
def generator_containing_discriminator(g, d):
model = Sequential()
model.add(g)
d.trainable = False
model.add(d)
return model
def combine_images(generated_images):
num = generated_images.shape[0]
width = int(math.sqrt(num))
height = int(math.ceil(float(num)/width))
shape = generated_images.shape[1:3]
image = np.zeros((height*shape[0], width*shape[1]),
dtype=generated_images.dtype)
for index, img in enumerate(generated_images):
i = int(index/width)
j = index % width
image[i*shape[0]:(i+1)*shape[0], j*shape[1]:(j+1)*shape[1]] = \
img[:, :, 0]
return image # 2d matrix
def train(BATCH_SIZE):
# input image dimensions
img_rows, img_cols = 256, 256
# number of channels
img_channels = 3
#%%
# data
path1 = 'H:/lung/CNN/posterior/images' #path of folder of images
path2 = 'H:/git/keras-dcgan/resized_256' #path of folder to save images
listing = os.listdir(path1)
num_samples=size(listing)
print (num_samples)
for file in listing:
im = Image.open(path1 + '/' + file)
img = im.resize((img_rows,img_cols))
#img = array(img).reshape(1,img_rows,img_cols,1)
gray = img.convert('L')
#need to do some more processing here
gray.save(path2 +'/' + file, "JPEG")
img.save(path2 +'/' + file, "JPEG")
imlist = os.listdir(path2)
#im1 = array(Image.open('resized' + '/'+ imlist[0])) # open one image to get size
im1 = array(Image.open(path2 + '/'+ imlist[0])) # open one image to get size
m,n = im1.shape[0:2] # get the size of the images
imnbr = len(imlist) # get the number of images
# create matrix to store all flattened images
#immatrix = array([array(Image.open('resized'+ '/' + im2)).flatten()
#for im2 in imlist],'f')
immatrix = array([array(Image.open(path2 + '/' + im2)).flatten()
for im2 in imlist],'f')
immatrix=immatrix.reshape(imnbr,img_rows,img_cols,1)
label=np.ones((num_samples,),dtype = int)
label[0:555]=0
label[556:1363]=1
label[1364:]=2
data,Label = shuffle(immatrix,label, random_state=2)
train_data = [data,Label]
#img=immatrix[167].reshape(img_rows,img_cols)
# plt.imshow(img)
# plt.imshow(img,cmap='gray')
print (train_data[0].shape)
print (train_data[1].shape)
#%%
(X, Y) = (train_data[0],train_data[1])
# STEP 1: split X and y into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.1, random_state=4)
# (X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = (X_train.astype(np.float32) - 127.5)/127.5
X_train = X_train[:, :, :, None]
X_test = X_test[:, :, :, None]
# X_train = X_train.reshape((X_train.shape, 1) + X_train.shape[1:])
d = discriminator_model()
g = generator_model()
d_on_g = generator_containing_discriminator(g, d)
d_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True)
g_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True)
g.compile(loss='binary_crossentropy', optimizer="SGD")
d_on_g.compile(loss='binary_crossentropy', optimizer=g_optim)
d.trainable = True
d.compile(loss='binary_crossentropy', optimizer=d_optim)
for epoch in range(10):
print("Epoch is", epoch)
print("Number of batches", int(X_train.shape[0]/BATCH_SIZE))
for index in range(int(X_train.shape[0]/BATCH_SIZE)):
noise = np.random.uniform(-1, 1, size=(BATCH_SIZE, 100))
image_batch = X_train[index*BATCH_SIZE:(index+1)*BATCH_SIZE]
image_batch = image_batch.reshape(128,img_rows,img_cols,1)
print(shape(image_batch))
generated_images = g.predict(noise, verbose=0)
print(shape(generated_images))
if index % 20 == 0:
image = combine_images(generated_images)
image = image*127.5+127.5
Image.fromarray(image.astype(np.uint8)).save(
str(epoch)+"_"+str(index)+".png")
# fromarray: creates an image memory from an object exporting the array interface
X = np.concatenate((image_batch, generated_images))
y = [1] * BATCH_SIZE + [0] * BATCH_SIZE
d_loss = d.train_on_batch(X, y)
print("batch %d d_loss : %f" % (index, d_loss))
noise = np.random.uniform(-1, 1, (BATCH_SIZE, 100))
d.trainable = False
g_loss = d_on_g.train_on_batch(noise, [1] * BATCH_SIZE)
d.trainable = True
print("batch %d g_loss : %f" % (index, g_loss))
if index % 10 == 9:
g.save_weights('generator', True)
d.save_weights('discriminator', True)
def generate(BATCH_SIZE, nice=False):
g = generator_model()
g.compile(loss='binary_crossentropy', optimizer="SGD")
g.load_weights('generator')
if nice:
d = discriminator_model()
d.compile(loss='binary_crossentropy', optimizer="SGD")
d.load_weights('discriminator')
noise = np.random.uniform(-1, 1, (BATCH_SIZE*20, 100))
generated_images = g.predict(noise, verbose=1)
d_pret = d.predict(generated_images, verbose=1)
index = np.arange(0, BATCH_SIZE*20)
index.resize((BATCH_SIZE*20, 1))
pre_with_index = list(np.append(d_pret, index, axis=1))
pre_with_index.sort(key=lambda x: x[0], reverse=True)
nice_images = np.zeros((BATCH_SIZE,) + generated_images.shape[1:3], dtype=np.float32)
nice_images = nice_images[:, :, :, None]
for i in range(BATCH_SIZE):
idx = int(pre_with_index[i][1])
nice_images[i, :, :, 0] = generated_images[idx, :, :, 0]
image = combine_images(nice_images)
else:
noise = np.random.uniform(-1, 1, (BATCH_SIZE, 100))
generated_images = g.predict(noise, verbose=1)
image = combine_images(generated_images)
image = image*127.5+127.5
Image.fromarray(image.astype(np.uint8)).save(
"generated_image.png")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str)
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--nice", dest="nice", action="store_true")
parser.set_defaults(nice=False)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
if args.mode == "train":
train(BATCH_SIZE=args.batch_size)
elif args.mode == "generate":
generate(BATCH_SIZE=args.batch_size, nice=args.nice)