-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsjb_util.py
executable file
·266 lines (215 loc) · 10.6 KB
/
sjb_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#(c) Copyright Rosetta Commons Member Institutions.
#(c) This file is part of the Rosetta software suite and is made available under license.
#(c) The Rosetta software is developed by the contributing members of the Rosetta Commons.
#(c) For more information, see http://www.rosettacommons.org. Questions about this can be
#(c) addressed to University of Washington CoMotion, email: [email protected].
import rosetta
from rosetta import *
from rosetta import protocols
from rosetta.protocols import *
from rosetta.protocols.hybridization import *
from numpy import array as nparray
from numpy import mean as npmean
from numpy import float64 as npfloat64
from numpy import tile as nptile
from numpy import dot as npdot
from numpy import transpose as nptranspose
from numpy.linalg import svd as nplinalgsvd
from numpy.linalg import det as nplinalgdet
def tmalign( pose, ref_pose ):
'''
Takes a pose (with or without a ligand) and overlays it with the ref pose
Assumes the ligand (if any) is in the pose to be moved
input: pose, reference_pose
output: atommap, and tm object
use: atommap , tm = tmalign(model,crystal)
'''
print 'Running tmalign on poses'
print 'Starting xyz coords for res1 CA pose and reference pose'
print pose.residue(1).xyz('CA')
print ref_pose.residue(1).xyz('CA')
ligs = False
listlig = []
for i in range(1,pose.total_residue()+1):
if pose.residue(i).is_ligand():
listlig.append(i)
if len(listlig) > 0:
print 'Ligand detected, will also overlay'
ligs = True
copy = Pose()
copy.assign(pose)
offset = len(listlig)
# construct the TMalign object
tm = rosetta.protocols.hybridization.TMalign()
tm.apply(pose, ref_pose)
longest = max(pose.n_residue()+1, ref_pose.n_residue()+1)
print 'TMScore = %s ' %tm.TMscore(longest)
#print tm.TMscore(longest)
# Now pull the atom mapping from tmalign
# tmalign makes it's own alignment so we use that to do the ''partial'' threading
# some setup for alignment2AtomMap method
atommap = rosetta.core.id.AtomID_Map_T_core_id_AtomID_T()
# atommap = rosetta.core.id.AtomID_Map_core_id_AtomID_t()
rosetta.core.pose.initialize_atomid_map( atommap, pose )
tm.alignment2AtomMap( pose, ref_pose, atommap )
# some setup for partial thread
aln_cutoff = rosetta.utility.vector1_Real()
# aln_cutoff = rosetta.utility.vector1_double()
for i in [2,1.5,1.0,.5]:
aln_cutoff.append(i)
# min_coverage = .2
min_coverage = .5
rosetta.protocols.hybridization.partial_align(pose,ref_pose, atommap, True, aln_cutoff, min_coverage)
print 'Hopefully these coordinates have changed, use the PyMolMover / Observer to watch in realtime'
print pose.residue(1).xyz('CA')
print ref_pose.residue(1).xyz('CA')
print "Checking for ligand, will move it too!"
if ligs:
precoord = []
postcoord = []
for i in range(1,pose.total_residue()+1-offset):
try:
pre_i = copy.residue(i).atom('CA').xyz()
prexyz = [ pre_i.x, pre_i.y, pre_i.z ]
precoord.append( prexyz )
post_i = pose.residue(i).atom('CA').xyz()
postxyz = [ post_i.x, post_i.y, post_i.z ]
postcoord.append(postxyz)
except:
pass
premat = nparray(precoord,dtype=npfloat64)
postmat = nparray(postcoord,dtype=npfloat64)
R,t = rigid_transform_3D( premat, postmat)
for j in listlig:
for k in range(1,pose.residue(j).natoms()+1):
ligatm = pose.residue(j).atom(k)
prevec = nparray([ ligatm.xyz().x, ligatm.xyz().y, ligatm.xyz().z ], dtype = npfloat64 )
postvec = npdot(R,prevec) + t
newrosettavec = rosetta.numeric.xyzVector_Real( postvec[0], postvec[1], postvec[2] )
pose.set_xyz(rosetta.core.id.AtomID(k,j), newrosettavec)
return (atommap,tm)
def active_site_rmsd( crystal, model ):
crystalpdbinfo = crystal.pdb_info()
print crystalpdbinfo.get_num_unrecognized_atoms()
ua = crystalpdbinfo.get_unrecognized_atoms()
activesiteresnumberset = set()
cutoff = 8
# cutoff = 16
for i in ua:
ligcoords = i.coords()
for j in range(1,crystal.n_residue()+1):
resj = crystal.residue( j )
for k in resj.atoms():
disttolig = ligcoords.distance( k.xyz() ) ## Note, type information and methods are in the .hh files in rosetta
if disttolig < cutoff:
activesiteresnumberset.add(int(j) )
print activesiteresnumberset
mycrystalpdbnumberset = set()
for i in list(activesiteresnumberset):
mycrystalpdbnumberset.add(crystalpdbinfo.pose2pdb(i) )
print "Pose Number %s <-----> Crystal Number %s" %(i,crystalpdbinfo.pose2pdb(i))
from sjb_util import tmalign
atommap, tm = tmalign(model,crystal)
for i in range(1,model.n_residue()+1):
if model.residue(i).is_protein():
atom_id_CA_resi = rosetta.core.id.AtomID( model.residue(i).atom_index("CA"),i)
# print "Model CA %s maps to Crystal CA %s " %(atom_id_CA_resi.rsd(), atommap.get(atom_id_CA_resi).rsd())
print atommap
model_map_to_crystal = dict()
for i in list(activesiteresnumberset):
try:
if model.residue(i).is_protein():
#print i
#print "CA atom index = %s" %model.residue(i).atom_index("CA")
atom_id_CA_resi = rosetta.core.id.AtomID( model.residue(i).atom_index("CA"),i)
print "Model CA %s maps to Crystal CA %s " %(atom_id_CA_resi.rsd(), atommap.get(atom_id_CA_resi).rsd())
model_map_to_crystal[atom_id_CA_resi.rsd()] = atommap.get(atom_id_CA_resi).rsd()
except:
print "ERROR %s" %i # Dies on the metal ions
pass
running_activesite_rms = 0.0
natoms = 0.0
running_activesite_rms_lig = 0.0
nligatoms = 0.0
running_activesite_rms_ca = 0.0
ncaatoms = 0.0
for i in model_map_to_crystal.iterkeys(): ## iter over the active site residues
if model_map_to_crystal[i] != 0:
modelresi = model.residue(i)
crystalresi = crystal.residue(model_map_to_crystal[i]) # Get the crystal mapped residue
assert modelresi.name3() == crystalresi.name3(), "These are different residues~!"
#print i
for j in range(1,crystalresi.natoms()): # loop over atoms in crystal
if not crystalresi.atom_is_hydrogen( j ): #skip the hydrogens
atomcrystal = crystalresi.atom(j)
#print crystalresi.atom_name(1)
for l in range(1,modelresi.natoms()): #loop over atoms in model
if not modelresi.atom_is_hydrogen( l ): #skip hydrogens
atommodel = modelresi.atom(l)
if (crystalresi.atom_name(j) == modelresi.atom_name(l)): # same type of atom
#print "Match"
#print "|%s|" %crystalresi.atom_name(j)
#print modelresi.atom_name(l)
#print atomcrystal.type()
#print type( atomcrystal.type())
#atmtyp = crystalresi.atom_type( atomcrystal.type() )
# All atom active site rmsd counters
#print "Match"
#print atommodel.xyz()
#print atomcrystal.xyz()
rms_j_l = atommodel.xyz().distance( atomcrystal.xyz() )
running_activesite_rms += rms_j_l
natoms += 1.0
# Ca active site rsmd counters here
if modelresi.atom_name(j) == ' CA ':
#print "This is the CA"
rms_jca_lca = atommodel.xyz().distance( atomcrystal.xyz() )
running_activesite_rms_ca += rms_jca_lca
ncaatoms +=1
#print "Over %s atoms in active site" %natoms
active_rms = (running_activesite_rms)/(natoms)
#print "Over %s CA atoms in active site " %ncaatoms #this should be 55 - 3 metals
ca_active_rms = (running_activesite_rms_ca)/(ncaatoms)
import pandas as pd
from rosetta.core.scoring.methods import EnergyMethodOptions
sfxn = get_fa_scorefxn() #get a scorefunction (default talaris2013)
talaris2013_energy_methods = sfxn.energy_method_options() #have to copy the default energy methods from talaris first
emo = EnergyMethodOptions( talaris2013_energy_methods) #must do this to get per res hbond_bb terms in breakdown
emo.hbond_options().decompose_bb_hb_into_pair_energies( True ) # set to true, defaults False
sfxn.set_energy_method_options( emo ) #set the sfxn up with the energy method options
print sfxn(model)
score_types = []
for i in range(1, rosetta.core.scoring.end_of_score_type_enumeration+1):
ii = rosetta.core.scoring.ScoreType(i)
if model.energies().weights()[ii] != 0: score_types.append(ii)
listofseries = []
for j in range(1,model.total_residue()+1):
mydict = {}
for i in score_types:
myweight = model.energies().weights()[i]
mydict['%s' %core.scoring.ScoreTypeManager.name_from_score_type(i)] = myweight*model.energies().residue_total_energies(j)[i]
listofseries.append( pd.Series(mydict))
df = pd.DataFrame(listofseries)
df.index +=1 #makes index start at 1, not 0. Now, each row refers to its proper residue number (ie resi =1 -> row1)
df = df.T # Need to do this to be able to access per resi energy with df[[1]] indexing
print model.n_residue() # Just to check the lengths are the same
active_energy = df[ [x for x in model_map_to_crystal.iterkeys()] ].sum().sum()
return (active_energy, active_rms, ca_active_rms)
def rigid_transform_3D( MatA, MatB ):
'''
Pass in 2 numpy arrays to get the R and t
'''
assert len(MatA) == len(MatB)
N = MatA.shape[0]
comA = npmean(MatA, axis = 0 )
comB = npmean(MatB, axis = 0 )
A = MatA - nptile(comA, (N,1))
B = MatB - nptile(comB, (N,1))
H = npdot( nptranspose(A), B )
U,S,V = nplinalgsvd(H)
R = npdot(nptranspose(V),nptranspose(U))
if nplinalgdet(R) < 0:
V[2,:] *= -1
R = npdot(nptranspose(V),nptranspose(U))
t = -npdot(R,nptranspose(comA))+nptranspose(comB)
return R,t