-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
445 lines (369 loc) · 25.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import time
import argparse
import torch
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score, average_precision_score
import numpy as np
import random
from utils.pytorchtools import EarlyStopping
from utils.data import load_DBLP_data
from utils.tools import index_generator, evaluate_results_nc, parse_minibatch_DBLP, get_aa_negtive_nodes, get_ap_negtive_nodes
from model.DHGNN_lp import *
import warnings
warnings.filterwarnings("ignore")
# Params
out_dim = 4
# dropout_rate = 0.2
# lr = 1e-4
weight_decay = 0.001
etypes_list = [[0, 1], [0, 2, 3, 1], [0, 4, 5, 1]]
text_mask = [[1], [1, 3], [1, 3]]
use_masks = [True, True, True] # 两边的元路径相同
no_masks = [False] * 3
# 0 represents paper-author
# 1 represents author-paper
# 2 represents paper-conference
# 3 represents conference-paper
# 4 represents paper-term
# 5 represents term-paper
def run_model_DBLP(feats_type, hidden_dim, asp_dim, num_heads, attn_vec_dim, rnn_type,
num_epochs, patience, batch_size, neighbor_samples, neg_num, repeat, save_postfix, gpu_num, seed, lr, max_iter, dropout_rate,lamda,ga,pr,prc):
adjlists_aa, edge_metapath_indices_list_aa, features_list, topic_array, adjM, type_mask, train_val_test_pos_a_p, train_val_test_neg_a_p, adj_lists = load_DBLP_data(num_heads)
device = torch.device('cuda:' + str(gpu_num) if torch.cuda.is_available() else 'cpu')
features_list = [torch.FloatTensor(features).to(device) for features in features_list]
topic = torch.FloatTensor(np.vstack([topic_array, np.array([[1/num_heads] * topic_array.shape[1]])])).to(device)
print(topic_array.shape)
if feats_type == 0: # 不同feature不同维度列表
in_dims = [features.shape[1] for features in features_list]
elif feats_type == 1:
in_dims = [features_list[0].shape[1]] + [10] * (len(features_list) - 1)
for i in range(1, len(features_list)):
features_list[i] = torch.zeros((features_list[i].shape[0], 10)).to(device)
elif feats_type == 2:
in_dims = [features.shape[0] for features in features_list]
in_dims[0] = features_list[0].shape[1]
for i in range(1, len(features_list)):
dim = features_list[i].shape[0]
indices = np.vstack((np.arange(dim), np.arange(dim)))
indices = torch.LongTensor(indices)
values = torch.FloatTensor(np.ones(dim))
features_list[i] = torch.sparse.FloatTensor(indices, values, torch.Size([dim, dim])).to(device)
elif feats_type == 3:
in_dims = [features.shape[0] for features in features_list]
for i in range(len(features_list)):
dim = features_list[i].shape[0]
indices = np.vstack((np.arange(dim), np.arange(dim)))
indices = torch.LongTensor(indices)
values = torch.FloatTensor(np.ones(dim))
features_list[i] = torch.sparse.FloatTensor(indices, values, torch.Size([dim, dim])).to(device)
# 链接预测实验
train_pos_a_p = train_val_test_pos_a_p['a_p_train_pos_candidates']
val_pos_a_p = train_val_test_pos_a_p['a_p_test_pos_candidates']
test_pos_a_p = train_val_test_pos_a_p['a_p_test_pos_candidates']
train_a_nodes = list(train_val_test_neg_a_p['a_nodes'])
train_p_nodes = list(train_val_test_neg_a_p['p_nodes'])
aa_lists = adj_lists[0]
ap_lists = adj_lists[1]
val_neg_a_p = train_val_test_neg_a_p['a_p_test_neg_candidates']
test_neg_a_p = train_val_test_neg_a_p['a_p_test_neg_candidates']
y_true_test_p = np.array([1] * len(test_pos_a_p) + [0] * len(test_neg_a_p))
# core
train_core_align_label = torch.from_numpy(np.arange(0, num_heads)).to(device)
auc_list = []
ap_list = []
val_auc_list = []
val_ap_list = []
with open('result_{}.txt'.format(save_postfix), 'w', encoding='utf8') as result_file:
for _ in range(repeat):
net = DHGNN_lp( # 两种节点元路径类别,边类型个数,边类型的list, feauture的维度,
3, 6, etypes_list, in_dims, asp_dim, hidden_dim, num_heads, attn_vec_dim, max_iter, rnn_type, dropout_rate)
net.to(device)
fn_loss = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay)
# training loop
net.train() # 训练
early_stopping = EarlyStopping(patience=patience, verbose=True, save_path='v1_checkpoint/checkpoint_{}.pt'.format(save_postfix))
dur1 = []
dur2 = []
dur3 = []
current_loss = 10000.0
current_auc = 0.0
train_pos_idx_generator = index_generator(batch_size=batch_size, num_data=len(train_pos_a_p))
val_idx_generator_ap = index_generator(batch_size=batch_size, num_data=len(val_pos_a_p), shuffle=False)
for epoch in range(num_epochs):
t_start = time.time()
# training
net.train()
for iteration in range(train_pos_idx_generator.num_iterations()):
# forward
t0 = time.time()
train_pos_idx_batch = train_pos_idx_generator.next() # batch里的索引
train_pos_idx_batch.sort()
# [8,2]
train_pos_a_a_batch = train_pos_a_p[train_pos_idx_batch].tolist()
train_pos_a_p_batch = list(map(lambda sample: [sample[0], sample[1]], train_pos_a_a_batch))
train_neg_a_p_batch = get_ap_negtive_nodes(train_p_nodes, ap_lists, [row[0] for row in train_pos_a_a_batch], neg_num)
train_pos_g_lists, train_pos_indices_lists, train_pos_text_indices_lists, train_pos_idx_batch_mapped_lists, train_pos_nodes_lists = parse_minibatch_DBLP(
adjlists_aa, edge_metapath_indices_list_aa, train_pos_a_a_batch, text_mask, topic_array, device,
a_p_batch=train_pos_a_p_batch, samples=neighbor_samples, use_masks=use_masks, modes=1)
train_neg_g_lists, train_neg_indices_lists, train_neg_text_indices_lists, train_neg_idx_batch_mapped_lists, train_neg_nodes_lists = parse_minibatch_DBLP(
adjlists_aa, edge_metapath_indices_list_aa, train_pos_a_a_batch, text_mask, topic_array, device,
a_p_batch=train_pos_a_p_batch, samples=neighbor_samples, use_masks=no_masks, modes=1)
# [neg_num, 3]
t1 = time.time()
dur1.append(t1 - t0)
a_pos_embedding_list, a_logits_pos_embedding_list, asp_features, align_scores, att_pos = net(
([train_pos_g_lists], features_list, topic, [train_pos_text_indices_lists], type_mask,
[train_pos_indices_lists], [train_pos_idx_batch_mapped_lists], [train_pos_nodes_lists]))
a_neg_embedding_list, a_logits_neg_embedding_list, asp_features, align_scores_neg, att_neg = net(
([train_neg_g_lists], features_list, topic, [train_neg_text_indices_lists], type_mask,
[train_neg_indices_lists], [train_neg_idx_batch_mapped_lists], [train_neg_nodes_lists]))
pos_embedding_a0 = F.elu(a_pos_embedding_list[0].view(-1, 1, asp_dim)) # [8k,1,64]
neg_embedding_a0 = F.elu(a_neg_embedding_list[0].view(-1, 1, asp_dim))
''' 去掉relu'''
p_pos_embedding = F.elu(asp_features[np.array([row[1] for row in train_pos_a_a_batch])].view(-1, asp_dim, 1)) # [8, dim, 1]
p_neg_embedding = F.elu(torch.cat([asp_features[np.array(train_neg_a_p_batch)[:, i]].view(-1, asp_dim, 1)
for i in range(neg_num)], dim=-1)) # [8,dim,10]
# prior build 6 matrix
prior_list = [[], []] # 正样本 和 负样本
prior_loss = 0.0
if pr == 0:
for mode, text in enumerate(train_pos_text_indices_lists): # 正样本 目前单边是一个
for path in text: # 3条元路径
prior_M = torch.mean(topic[path], 0)
prior_list[0].append(prior_M.squeeze(dim=0)) # [2,3]
for mode, text in enumerate(train_neg_text_indices_lists): # 负样本 目前单边是一个
for path in text:
prior_M = torch.mean(topic[path], 0)
prior_list[1].append(prior_M.squeeze(dim=0))
for mode in range(1):
for posterior, prior in zip(att_pos[mode], prior_list[0]): # 三条元路径
Pr = torch.diag(prior)
posterior = posterior.squeeze(dim=-1)
PP = posterior.t().mm(posterior)
prior_loss += torch.norm(PP / (torch.norm(PP) + 1e-9) - Pr / (torch.norm(Pr) + 1e-9))
for mode in range(1):
for posterior, prior in zip(att_neg[mode], prior_list[1]): #
Pr = torch.diag(prior)
posterior = posterior.squeeze(dim=-1)
PP = posterior.t().mm(posterior)
prior_loss += torch.norm(PP / (torch.norm(PP) + 1e-9) - Pr / (torch.norm(Pr) + 1e-9))
elif pr == 1:
for mode, text in enumerate(train_pos_text_indices_lists): # 正样本
for path in text: # 3条元路径
prior_M = topic[path].squeeze(dim=1) # m条实例
prior_list[0].append(prior_M) # [2,3]
for mode, text in enumerate(train_neg_text_indices_lists): # 负样本
for path in text:
prior_M = topic[path].squeeze(dim=1) # m条实例
prior_list[1].append(prior_M)
for mode in range(1):
for posterior, prior in zip(att_pos[mode], prior_list[0]): # 三条元路径
prior_loss += F.kl_div(posterior.squeeze(dim=-1).log(), prior,reduction='batchmean')
for mode in range(1):
for posterior, prior in zip(att_neg[mode], prior_list[1]): #
prior_loss += F.kl_div(posterior.squeeze(dim=-1).log(), prior, reduction='batchmean')
else:
prior_loss += 0.0
if prc == 'mean':
prior_loss= prior_loss/(3+1e-9)
else:
prior_loss = prior_loss
# 计算loss
pos_ap_out = torch.bmm(pos_embedding_a0, p_pos_embedding).view(-1, num_heads, 1).sum(dim=1)
neg_ap_out = torch.bmm(neg_embedding_a0, p_neg_embedding).view(-1, num_heads, neg_num).sum(dim=1)
regular_loss = F.cross_entropy(align_scores[0], train_core_align_label) + F.cross_entropy(align_scores_neg[0],train_core_align_label)
# prior_loss =
label_pos = torch.unsqueeze(torch.ones(pos_ap_out.shape[0]), -1).to(device)
label_neg = torch.unsqueeze(torch.zeros(pos_ap_out.shape[0]), -1).to(device)
train_loss = fn_loss(pos_ap_out, label_pos) + fn_loss(neg_ap_out, label_neg) + lamda * regular_loss+ ga *prior_loss
# print(torch.max(torch.bmm(pos_embedding_a0, pos_embedding_a1).view(-1, num_heads, 1), 1)[1])
t2 = time.time()
dur2.append(t2 - t1)
# autograd
optimizer.zero_grad()
train_loss.backward()
optimizer.step()
t3 = time.time()
dur3.append(t3 - t2)
# print training info
if iteration % 800 == 0:
print(
'Epoch {:05d} | Iteration {:05d} | Train_Loss {:.4f} |topic_Loss {:.4f} |ga_topic_Loss {:.4f}| Time1(s) {:.4f} | Time2(s) {:.4f} | Time3(s) {:.4f}'.format(
epoch, iteration, train_loss.item(), prior_loss.item(), (ga*prior_loss).item(), np.mean(dur1), np.mean(dur2), np.mean(dur3)))
# validation
net.eval()
val_loss = []
ap_val_loss = []
ap_pos_proba_list = []
ap_neg_proba_list = []
pos_att_list_a0_0 = []
pos_att_list_a0_1 = []
pos_att_list_a0_2 = []
neg_att_list_a0_0 = []
neg_att_list_a0_1 = []
neg_att_list_a0_2 = []
a_val_pos_embedding = []
a_val_neg_embedding = []
p_val_pos_embedding = []
p_val_neg_embedding = []
pos_max = []
with torch.no_grad(): # 没有梯度
for iteration in range(val_idx_generator_ap.num_iterations()):
# forward
val_idx_batch = val_idx_generator_ap.next()
val_pos_a_p_batch = val_pos_a_p[val_idx_batch].tolist()
val_neg_a_p_batch = val_neg_a_p[val_idx_batch].tolist()
val_pos_g_lists, val_pos_indices_lists, val_pos_text_indices_lists, val_pos_idx_batch_mapped_lists, val_pos_nodes_lists = parse_minibatch_DBLP(
adjlists_aa, edge_metapath_indices_list_aa, val_pos_a_p_batch, text_mask, topic_array, device, samples=neighbor_samples, use_masks=no_masks, modes=1)
val_neg_g_lists, val_neg_indices_lists, val_neg_text_indices_lists, val_neg_idx_batch_mapped_lists, val_neg_nodes_lists = parse_minibatch_DBLP(
adjlists_aa, edge_metapath_indices_list_aa, val_neg_a_p_batch, text_mask, topic_array, device, samples=neighbor_samples, use_masks=no_masks, modes=1)
a_pos_embedding_list, a_logits_pos_embedding_list, asp_features, pos_align_scores, att_pos= net(
([val_pos_g_lists], features_list, topic, [val_pos_text_indices_lists], type_mask,
[val_pos_indices_lists], [val_pos_idx_batch_mapped_lists], [val_pos_nodes_lists]))
a_neg_embedding_list, a_logits_neg_embedding_list, asp_features, neg_align_scores, att_neg = net(
([val_neg_g_lists], features_list, topic,
[val_neg_text_indices_lists], type_mask,
[val_neg_indices_lists],
[val_neg_idx_batch_mapped_lists],
[val_neg_nodes_lists]))
# a_neg_embedding_list, _ = net(
# (val_neg_g_lists, features_list, topic, val_neg_text_indices_lists, type_mask, val_neg_indices_lists, val_neg_idx_batch_mapped_lists, val_neg_nodes_lists, True))
p_pos_embedding = F.elu(asp_features[np.array([row[1] for row in val_pos_a_p_batch])].view(-1, asp_dim, 1))
pos_embedding_a0 = F.elu(a_pos_embedding_list[0].view(-1, 1, asp_dim)) # [8k,1,64]
# p_pos_embedding = asp_features[np.array([row[1] for row in val_pos_a_p_batch])].view(-1, asp_dim, 1)
neg_embedding_a0 = F.elu(a_neg_embedding_list[0].view(-1, 1,asp_dim))
p_neg_embedding = F.elu(asp_features[np.array([row[1] for row in val_neg_a_p_batch])].view(-1, asp_dim, 1))
# p_neg_embedding = asp_features[np.array([row[1] for row in val_neg_a_p_batch])].view(-1, asp_dim, 1)
# 计算loss
pos_ap_out = torch.bmm(pos_embedding_a0, p_pos_embedding).view(-1, num_heads, 1).sum(dim=1) # [64,1,1]->[8,8,1]->[8,1]
neg_ap_out = torch.bmm(neg_embedding_a0, p_neg_embedding).view(-1, num_heads, 1).sum(dim=1)
# pos_ap_max = torch.max(torch.bmm(pos_embedding_a0, p_pos_embedding).view(-1, num_heads), 1)[
# 1]
label_pos = torch.unsqueeze(torch.ones(pos_ap_out.shape[0]), -1).to(device)
label_neg = torch.unsqueeze(torch.zeros(pos_ap_out.shape[0]), -1).to(device)
ap_val_loss.append(fn_loss(pos_ap_out, label_pos) + fn_loss(neg_ap_out, label_neg)) # 一个batch的平均
pos_out = torch.bmm(pos_embedding_a0, p_pos_embedding).view(-1, num_heads, 1).sum(dim=1).flatten() # 0 1维推平 [8,1]
neg_out = torch.bmm(neg_embedding_a0, p_neg_embedding).view(-1, num_heads, 1).sum(dim=1).flatten()
ap_pos_proba_list.append(torch.sigmoid(pos_out))
ap_neg_proba_list.append(torch.sigmoid(neg_out))
# 输出att
pos_att_list_a0_0.append(att_pos[0][0])
pos_att_list_a0_1.append(att_pos[0][1])
pos_att_list_a0_2.append(att_pos[0][2])
neg_att_list_a0_0.append(att_neg[0][0])
neg_att_list_a0_1.append(att_neg[0][1])
neg_att_list_a0_2.append(att_neg[0][2])
# 输出embedding
a_val_pos_embedding.append(F.elu(a_pos_embedding_list[0]))
a_val_neg_embedding.append(F.elu(a_neg_embedding_list[0]))
p_val_pos_embedding.append(F.elu(asp_features[np.array([row[1] for row in val_pos_a_p_batch])]))
p_val_neg_embedding.append(F.elu(asp_features[np.array([row[1] for row in val_neg_a_p_batch])]))
# pos_max.append(pos_ap_max)
ap_y_proba_test = torch.cat(ap_pos_proba_list + ap_neg_proba_list)
ap_y_proba_test = ap_y_proba_test.cpu().numpy()
ap_val_loss = torch.mean(torch.tensor(ap_val_loss))
pos_att_list_a0_0 = torch.cat(pos_att_list_a0_0).cpu().numpy()
pos_att_list_a0_1 = torch.cat(pos_att_list_a0_1).cpu().numpy()
pos_att_list_a0_2 = torch.cat(pos_att_list_a0_2).cpu().numpy()
neg_att_list_a0_0 = torch.cat(neg_att_list_a0_0).cpu().numpy()
neg_att_list_a0_1 = torch.cat(neg_att_list_a0_1).cpu().numpy()
neg_att_list_a0_2 = torch.cat(neg_att_list_a0_2).cpu().numpy()
# se_max=torch.cat(pos_max, 0).cpu().detach().numpy())
t_end = time.time()
ap_auc = roc_auc_score(y_true_test_p, ap_y_proba_test)
ap_ap = average_precision_score(y_true_test_p, ap_y_proba_test)
print('Link Prediction Test')
print('ap_AUC = {}'.format(ap_auc))
print('ap_AP = {}'.format(ap_ap))
result_file.write('AP--' + 'auc:' + str(ap_auc) + ' ' + 'ap:' + str(ap_ap) + '\n')
print('Epoch {:05d} | Val_Loss {:.4f} | Time(s) {:.4f}'.format(
epoch, ap_val_loss.item(), t_end - t_start))
if ap_auc > current_auc:
current_auc = ap_auc
early_stopping(ap_auc, net)
if early_stopping.early_stop:
print('Early stopping!')
break
# 跳出epoch
test_idx_generator = index_generator(batch_size=batch_size, num_data=len(test_pos_a_a), shuffle=False)
net.load_state_dict(torch.load('v1_checkpoint/checkpoint_{}.pt'.format(save_postfix)))
net.eval()
pos_proba_list = []
neg_proba_list = []
with torch.no_grad():
for iteration in range(test_idx_generator.num_iterations()):
# forward
test_idx_batch = test_idx_generator.next()
test_pos_a_a_batch = test_pos_a_a[test_idx_batch].tolist()
test_neg_a_a_batch = test_neg_a_a[test_idx_batch].tolist()
test_pos_g_lists, test_pos_indices_lists, test_pos_text_indices_lists, test_pos_idx_batch_mapped_lists, test_pos_nodes_lists = parse_minibatch_DBLP(
adjlists_aa, edge_metapath_indices_list_aa, test_pos_a_a_batch, text_mask, topic_array, device, samples=neighbor_samples, use_masks=no_masks)
test_neg_g_lists, test_neg_indices_lists, test_neg_text_indices_lists, test_neg_idx_batch_mapped_lists, test_neg_nodes_lists = parse_minibatch_DBLP(
adjlists_aa, edge_metapath_indices_list_aa, test_neg_a_a_batch, text_mask, topic_array, device, samples=neighbor_samples, use_masks=no_masks)
a_pos_embedding_list, a_neg_embedding_list, a_logits_pos_embedding_list, a_logits_neg_embedding_list, asp_features, att_pos, att_neg = net(
([test_pos_g_lists,test_neg_g_lists], features_list, topic, [test_pos_text_indices_lists, test_neg_text_indices_lists], type_mask,
[test_pos_indices_lists, test_neg_indices_lists], [test_pos_idx_batch_mapped_lists, test_neg_idx_batch_mapped_lists], [test_pos_nodes_lists, test_neg_nodes_lists]))
# a_neg_embedding_list, _ = net(
# (test_neg_g_lists, features_list, topic, test_neg_text_indices_lists, type_mask, test_neg_indices_lists, test_neg_idx_batch_mapped_lists, test_neg_nodes_lists, True))
pos_embedding_a0 = a_pos_embedding_list[0].view(-1, 1,asp_dim)
pos_embedding_a1 = a_pos_embedding_list[1].view(-1, asp_dim,1)
neg_embedding_a0 = a_neg_embedding_list[0].view(-1, 1,asp_dim)
neg_embedding_a1 = a_neg_embedding_list[1].view(-1, asp_dim,1)
pos_out = torch.max(torch.bmm(pos_embedding_a0, pos_embedding_a1).view(-1, num_heads, 1), 1)[
0].flatten() # 0 1维推平 [8,1]
neg_out = torch.max(torch.bmm(neg_embedding_a0, neg_embedding_a1).view(-1, num_heads, 1), 1)[
0].flatten()
pos_proba_list.append(torch.sigmoid(pos_out))
neg_proba_list.append(torch.sigmoid(neg_out))
y_proba_test = torch.cat(pos_proba_list + neg_proba_list)
y_proba_test = y_proba_test.cpu().numpy()
auc = roc_auc_score(y_true_test, y_proba_test)
ap = average_precision_score(y_true_test, y_proba_test)
print('Link Prediction Test')
print('AUC = {}'.format(auc))
print('AP = {}'.format(ap))
auc_list.append(auc)
ap_list.append(ap)
print('----------------------------------------------------------------')
print('Link Prediction Tests Summary')
print('AUC_mean = {}, AUC_std = {}'.format(np.mean(auc_list), np.std(auc_list)))
print('AP_mean = {}, AP_std = {}'.format(np.mean(ap_list), np.std(ap_list)))
if __name__ == '__main__':
ap = argparse.ArgumentParser(description='MRGNN testing for the DBLP dataset')
ap.add_argument('--feats-type', type=int, default=0, # 原本只用了author的feature 2
help='Type of the node features used. ' +
'0 - loaded features; ' +
'1 - only target node features (zero vec for others); ' +
'2 - only target node features (id vec for others); ' +
'3 - all id vec. Default is 2.')
ap.add_argument('--hidden-dim', type=int, default=64, help='Dimension of the node hidden state. Default is 64.')
ap.add_argument('--asp-dim', type=int, default=64, help='Dimension of the node hidden state. Default is 64.')
ap.add_argument('--num-heads', type=int, default=8, help='Number of the attention heads. Default is 8.')
ap.add_argument('--attn-vec-dim', type=int, default=128, help='Dimension of the attention vector. Default is 128.')
ap.add_argument('--rnn-type', default='RotatE0', help='Type of the aggregator. Default is RotatE0.')
ap.add_argument('--epoch', type=int, default=100, help='Number of epochs. Default is 100.')
ap.add_argument('--patience', type=int, default=5, help='Patience. Default is 5.')
ap.add_argument('--batch-size', type=int, default=8, help='Batch size. Default is 8.')
ap.add_argument('--neg_num', type=int, default=10, help='Number of negtives sampled. Default is 10.')
ap.add_argument('--samples', type=int, default=100, help='Number of neighbors sampled. Default is 100.')
ap.add_argument('--repeat', type=int, default=1, help='Repeat the training and testing for N times. Default is 1.')
ap.add_argument('--save-postfix', default='DBLP', help='Postfix for the saved model and result. Default is DBLP.')
ap.add_argument('--gpu_num', type=int, default=0)
ap.add_argument('--random_seed', type=int, default=1)
ap.add_argument('--lr', type=float, default=1e-4)
ap.add_argument('--dropout', type=float, default=0.5)
ap.add_argument('--lamda', type=float, default=1e-3)
ap.add_argument('--ga', type=float, default=1e-3)
ap.add_argument('--max_iter', type=int, default=3)
ap.add_argument('--pr', type=int, default=0)
ap.add_argument('--prc', type=str, default='mean')
args = ap.parse_args()
# fix random seed
random.seed(args.random_seed)
np.random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
run_model_DBLP(args.feats_type, args.hidden_dim, args.asp_dim, args.num_heads, args.attn_vec_dim, args.rnn_type,
args.epoch, args.patience, args.batch_size, args.samples, args.neg_num, args.repeat, args.save_postfix,args.gpu_num,args.random_seed,args.lr, args.max_iter,args.dropout, args.lamda, args.ga,args.pr,args.prc)