-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplayers.py
69 lines (59 loc) · 2.8 KB
/
players.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.callbacks import get_openai_callback
from langchain.chains.openai_functions import create_structured_output_chain
import os
import json
import time
import glob
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_KEY"
llm = ChatOpenAI(model="gpt-3.5-turbo-1106", temperature=0.3)
template = """Use the given format to extract information from the following input: {input}. Make sure to answer in the correct format. If a value is not found, set the value as 'not found'"""
prompt = PromptTemplate(template=template, input_variables=["input"])
json_schema = {
"type": "object",
"properties": {
"age": {"title": "Age", "description": "The age of the player as of 2023", "type": "integer"},
"height": {"title": "Height", "description": "Height of player in centimeters", "type": "integer"},
"serve": {"title": "Serve", "description": "The player's fastest serve in kmph. If given in mph, convert to kmph", "type": "integer"}
},
"required": ["age", "height", "serve"]
}
chain = create_structured_output_chain(json_schema, llm, prompt, verbose=False)
players = glob.glob("top_10_tennis_players/*") # Reading your document directory
for pi in range(len(players)):
f = open(f"{players[pi]}", "r")
player_text = str(f.read())
# Start of highlighted code
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=16000,
chunk_overlap=2000,
length_function=len,
add_start_index=True,
)
sub_texts = text_splitter.create_documents([player_text])
ch = []
for ti in range(len(sub_texts)):
with get_openai_callback() as cb:
ch.append(chain.run(sub_texts[ti]))
print(ch[-1])
print(cb)
print("\n")
# time.sleep(10) if you hit rate limits
for chi in range(1, len(ch), 1):
if (ch[chi]["age"] > ch[0]["age"]) or (ch[0]["age"] == "not found" and ch[chi]["age"] != "not found"):
ch[0]["age"] = ch[chi]["age"]
if (ch[chi]["serve"] > ch[0]["serve"]) or (ch[0]["serve"] == "not found" and ch[chi]["serve"] != "not found"):
ch[0]["serve"] = ch[chi]["serve"]
if (ch[0]["height"] == "not found") and (ch[chi]["height"] != "not found"):
ch[0]["height"] = ch[chi]["height"]
else:
continue
print("\n\n")
json_object = json.dumps(ch[0], indent=4)
# End of highlighted code
with open(f"{players[pi].replace('top_10_tennis_players', 'player_data').replace('.txt', '.json')}", "w") as outfile:
outfile.write("[\n"+json_object+"\n]")
# time.sleep(20) if you hit rate limits