-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathembeddings.py
29 lines (22 loc) · 822 Bytes
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from langchain.embeddings import OpenAIEmbeddings
from openai.embeddings_utils import cosine_similarity
import os
import pandas
import time
os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_KEY"
embeddings_model = OpenAIEmbeddings()
f = open("texts/Beyond Good and Evil.txt", "r")
phi_text = str(f.read())
chapters = phi_text.split("CHAPTER")
emb_list = []
for i in range(len(chapters)):
embs = embeddings_model.embed_query(chapters[i])
emb_list.append(embs)
# time.sleep(20) if you face rate limits
embedded_question = embeddings_model.embed_query("What are the flaws of philosophers?")
similarities = []
tags = []
for i2 in range(len(emb_list)):
similarities.append(cosine_similarity(emb_list[i2], embedded_question))
tags.append(f"CHAPTER {i2}")
print(tags[similarities.index(max(similarities))])