-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathshail-experiment.py
267 lines (234 loc) · 11.3 KB
/
shail-experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# %%
import os
import gym
from src.safe_options.options import gail_ppo, Buffer
from src.core.value import SetValue
from src.safe_options.policy import SetMaskedDiscretePolicy
from src.core.discriminator import DeepsetDiscriminator
import torch
from intersim.envs import IntersimpleLidarFlatRandom
from intersim.envs.intersimple import speed_reward
import functools
from src.util.wrappers import CollisionPenaltyWrapper, TransformObservation, Setobs
import numpy as np
from src.safe_options.options import SafeOptionsEnv
from torch.utils.tensorboard import SummaryWriter
from ray import tune
from datetime import datetime
import json
DIR = os.path.dirname(os.path.abspath(__file__))
option_list = [[(vel, time) for vel in [0, 1, 2, 4, 6, 8, 10] for time in [5]],
[(vel, time) for vel in [0, 1, 2, 5, 7.5, 10] for time in [5, 10]],
[(vel, time) for vel in [0, 3, 10] for time in [5, 10, 20]]
]
activations = [torch.nn.Tanh, torch.nn.LeakyReLU]
obs_min = np.array([
[-1000, -1000, 0, -np.pi, -1e-1, 0.],
[0, -np.pi, -20, -20, -np.pi, -1e-1],
[0, -np.pi, -20, -20, -np.pi, -1e-1],
[0, -np.pi, -20, -20, -np.pi, -1e-1],
[0, -np.pi, -20, -20, -np.pi, -1e-1],
[0, -np.pi, -20, -20, -np.pi, -1e-1],
]).reshape(-1)
obs_max = np.array([
[1000, 1000, 20, np.pi, 1e-1, 0.],
[50, np.pi, 20, 20, np.pi, 1e-1],
[50, np.pi, 20, 20, np.pi, 1e-1],
[50, np.pi, 20, 20, np.pi, 1e-1],
[50, np.pi, 20, 20, np.pi, 1e-1],
[50, np.pi, 20, 20, np.pi, 1e-1],
]).reshape(-1)
def training_function(config):
np.random.seed(config['seed'])
torch.manual_seed(config['seed'])
if config['experiment'] == 'A':
envs = [SafeOptionsEnv(Setobs(
TransformObservation(CollisionPenaltyWrapper(IntersimpleLidarFlatRandom(
n_rays=5,
reward=functools.partial(
speed_reward,
collision_penalty=0
),
check_collisions=True,
stop_on_collision=config['trainenv']['stop_on_collision'],
use_idm=config['trainenv']['use_idm'],
), collision_distance=6, collision_penalty=100), lambda obs: (obs - obs_min) / (obs_max - obs_min + 1e-10))
), options=option_list[config['policy']['option']],
safe_actions_collision_method=config['trainenv']['safe_actions_collision_method'],
abort_unsafe_collision_method=config['trainenv']['abort_unsafe_collision_method'],
) for _ in range(60)]
elif config['experiment'] == 'B':
envs = sum([[SafeOptionsEnv(Setobs(
TransformObservation(CollisionPenaltyWrapper(IntersimpleLidarFlatRandom(
n_rays=5,
reward=functools.partial(
speed_reward,
collision_penalty=0
),
check_collisions=True,
stop_on_collision=config['trainenv']['stop_on_collision'],
use_idm=config['trainenv']['use_idm'],
track=track,
), collision_distance=6, collision_penalty=100), lambda obs: (obs - obs_min) / (obs_max - obs_min + 1e-10))
), options=option_list[config['policy']['option']],
safe_actions_collision_method=config['trainenv']['safe_actions_collision_method'],
abort_unsafe_collision_method=config['trainenv']['abort_unsafe_collision_method'],
) for _ in range(15)] for track in range(4)],[])
else:
raise NotImplementedError
env_fn = lambda i: envs[i]
policy = SetMaskedDiscretePolicy(env_fn(0).action_space.n,
n_hidden_layers=config['policy']['n_hidden_layers'],
hidden_layer_size=config['policy']['hidden_layer_size'],
activation=activations[config['policy']['activation']] ) # config net architecture
pi_opt = torch.optim.Adam(policy.parameters(), lr=config['policy']['learning_rate'])
pi_lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(pi_opt, gamma=config['policy']['learning_rate_decay'])
value = SetValue() # config net architecture
v_opt = torch.optim.Adam(value.parameters(), lr=config['value']['learning_rate'])
discriminator = DeepsetDiscriminator(
n_hidden_layers_element=config['discriminator']['n_hidden_layers_element'],
n_hidden_layers_global=config['discriminator']['n_hidden_layers_global'],
hidden_layer_size=config['discriminator']['hidden_layer_size'],
activation=activations[config['discriminator']['activation']],
)
disc_opt = torch.optim.Adam(discriminator.parameters(), lr=config['discriminator']['learning_rate'], weight_decay=config['discriminator']['weight_decay'])
if config['experiment'] == 'A':
expert_data = torch.load(os.path.join(DIR, 'intersimple-expert-data-setobs2-loc0-track0.pt'))
elif config['experiment'] == 'B':
expert_data = [
torch.load(os.path.join(DIR, 'intersimple-expert-data-setobs2-loc0-track0.pt')),
torch.load(os.path.join(DIR, 'intersimple-expert-data-setobs2-loc0-track1.pt')),
torch.load(os.path.join(DIR, 'intersimple-expert-data-setobs2-loc0-track2.pt')),
torch.load(os.path.join(DIR, 'intersimple-expert-data-setobs2-loc0-track3.pt')),
]
d0 = [d[0] for d in expert_data]
d1 = [d[1] for d in expert_data]
d2 = [d[2] for d in expert_data]
d3 = [d[3] for d in expert_data]
expert_data = (torch.cat(d0), torch.cat(d1), torch.cat(d2), torch.cat(d3))
expert_data = Buffer(*expert_data)
def callback(info):
tune.report(gen_mean_reward_per_episode=info['gen/mean_reward_per_episode'],
disc_mean_reward_per_episode=info['disc/mean_reward_per_episode'],
mean_episode_length=info['gen/mean_episode_length'],
gen_collision_rate=info['gen/collision_rate'])
# save model checkpoints
ep = info['epoch'] + 1
if (ep % 25 == 0):
torch.save(info['policy'].state_dict(), f'policy_epoch{ep}.pt')
value, policy = gail_ppo(
env_fn=env_fn,
expert_data=expert_data,
discriminator=discriminator,
disc_opt=disc_opt,
disc_iters=config['discriminator']['iterations_per_epoch'],
policy=policy,
value=value,
v_opt=v_opt,
v_iters=config['value']['iterations_per_epoch'],
epochs=config['train_epochs'],
rollout_episodes=60,
rollout_steps=60,
gamma=0.99,
gae_lambda=0.9,
clip_ratio=config['policy']['clip_ratio'],
pi_opt=pi_opt,
pi_iters=config['policy']['iterations_per_epoch'],
logger=SummaryWriter(comment='sgail-ppo-options-setobs2'),
callback=callback,
lr_schedulers=[pi_lr_scheduler],
)
# save model
torch.save(policy.state_dict(), 'policy_final.pt')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train', choices=['A', 'B'])
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--test', type=str, help='path to config file to run final training on')
parser.add_argument('--test_seeds', type=int, default=5)
parser.add_argument('--test_cpus', type=int, help='number of cpus available to split test seed training over')
args = parser.parse_args()
assert (args.train is None) ^ (args.test is None), 'Must either train on an experiment or test with a config file'
# if no test config specified, train
if args.test is None:
print('Running Tuning for Experiment %s'%(args.train))
analysis = tune.run(
training_function,
config={
'experiment': args.train,
'trainenv': {
'stop_on_collision': False,
'safe_actions_collision_method': 'circle',
'abort_unsafe_collision_method': 'circle',
'use_idm':True,
},
'policy': {
'learning_rate': 3e-4,
'learning_rate_decay': 1.0,
'clip_ratio': 0.2,
'iterations_per_epoch': 100,
'hidden_layer_size': tune.grid_search([20, 40]),
'n_hidden_layers': tune.grid_search([2, 3]),
'activation':0,
'option': tune.grid_search(list(range(len(option_list))))
},
'value': {
'learning_rate': 1e-3,
'iterations_per_epoch': 1000,
},
'discriminator': {
'learning_rate': 1e-3,
'weight_decay': 1e-4,
'iterations_per_epoch': 100,
'n_hidden_layers_element': tune.grid_search([3,4]),
'n_hidden_layers_global': tune.grid_search([1,2]),
'hidden_layer_size': 10,
'activation': 0,
},
'train_epochs': args.epochs,
'seed': 0,
}
)
best_config = analysis.get_best_config(metric='gen_collision_rate', mode='min')
print('Best config: ', best_config)
# safe best_config
if not os.path.isdir(os.path.join(DIR, 'best_configs')):
os.mkdir(os.path.join(DIR, 'best_configs'))
# save shail
with open(os.path.join(DIR, 'best_configs',f'shail_exp{args.train}.json'), 'w', encoding='utf-8') as f:
json.dump(best_config, f, ensure_ascii=False, indent=4)
# save hail
best_config['trainenv']['safe_actions_collision_method']=None
best_config['trainenv']['abort_unsafe_collision_method']=None
with open(os.path.join(DIR, 'best_configs',f'hail_exp{args.train}.json'), 'w', encoding='utf-8') as f:
json.dump(best_config, f, ensure_ascii=False, indent=4)
# if config file specified, rerun it with appropriate number of seeds
else:
with open(args.test, 'rb') as f:
config = json.load(f)
print(f'Retraining {args.test} with {args.test_seeds} seeds on experiment {config["experiment"]}')
# rerun with appropriate number of seeds
rpt = {'cpu': int(args.test_cpus/args.test_seeds)} if (args.test_cpus is not None) else None
config['seed'] = tune.grid_search(list(range(1,args.test_seeds+1)))
analysis = tune.run(training_function, config=config, resources_per_trial=rpt)
# move final policies to appropriate directory
split_ = os.path.basename(args.test).split('_')
model = split_[0]
exper = split_[-1].split('.')[0]
savepath = os.path.join('test_policies',model,exper)
if not os.path.isdir(savepath):
os.makedirs(savepath)
import shutil
# save config
shutil.copyfile(
args.test,
os.path.join(savepath, 'config.json')
)
for i in range(args.test_seeds):
s = analysis._checkpoints[i]['config']['seed']
check_dir = analysis._checkpoints[i]['logdir']
shutil.copyfile(os.path.join(check_dir,'policy_final.pt'),
os.path.join(savepath, f'policy_seed{s}.pt'))
shutil.copyfile(os.path.join(check_dir,'params.json'),
os.path.join(savepath, 'config.json')) # copy config automatically