-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze-summary.py
439 lines (341 loc) · 15.1 KB
/
analyze-summary.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
from datetime import datetime
import os
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
ranges_rows = []
letter_to_index = {
}
columns = None
def get_letter_from_index(column):
""" search dataframe columns and return the letter associated with index.
A=1, B=2..."""
global columns
index = columns.index(column)
return chr(ord('A') + index)
def find_row_ranges(df, column = 'datetime', timespan_minutes=240):
"""
Find ranges of sessions that span more than `timespan_minutes` in a sorted df using `column`
Defaults:
columnd = 'datetime'
timespan_minutes = 240 (4h, 8 sessions)
"""
row_ranges = []
row_start = None
row_end = None
for i, row in df.iterrows():
if row_start is None:
datetime_start = row['datetime']
row_start = i
continue
row_prev = i-1
# print('-----------------')
# print(f'{row_start=}')
# print(f'{i=}')
# print(f'{datetime_start=}')
# print(f'{row["datetime"]=}')
row_end = row_prev
if row['datetime'] - df.iloc[row_prev]['datetime'] <= pd.Timedelta(f'2 hours') and i < df.shape[0]-1:
continue
if i == df.shape[0]-1:
row_end = i
if row_end - row_start >= 8:
# adjusting with +2 because of header and first row is 0 index
row_ranges.append((row_start+2, row_end+2, ))
row_start = i
row_end = None
return row_ranges
def plot_range(tuple, writer, sheetname):
"""Makes a plot of the tuple range"""
global columns
# Get the xlsxwriter objects from the dataframe writer object.
workbook = writer.book
worksheet = writer.sheets[sheetname]
col_datetime_sidereal_adj = get_letter_from_index('datetime_sidereal_adj')
col_amplitude_moving_avg_1h_datetime_sid = get_letter_from_index('amplitude_moving_avg_1h_datetime_sid')
col_time_sidereal_adj = get_letter_from_index('time_sidereal_adj')
col_amplitude_moving_avg_1h_time_sid = get_letter_from_index('amplitude_moving_avg_1h_time_sid')
col_time = get_letter_from_index('time')
col_altitude = get_letter_from_index('average_altitude')
# Configure the series of the chart from the dataframe data.
row_start = tuple[0]
row_end = tuple[1]
## Amplitude
# Create a chart object
chart = workbook.add_chart({'type': 'scatter'})
chart2 = workbook.add_chart({'type': 'scatter'})
# chart3 = workbook.add_chart({'type': 'scatter'})
chart.set_x_axis({
'name': 'Fecha/Hora (dd/mm HH:MM)',
'date_axis': True,
'num_format': 'HH:MM',
'num_font': {'rotation': -45}
})
chart.set_y_axis({'name': 'Amplitud normalizada'})
chart.set_legend({'none': True})
chart2.set_legend({'none': True})
chart2.set_x_axis({
'name': 'Fecha/Hora (dd/mm HH:MM)',
'date_axis': True,
'num_format': 'dd/mm HH:MM',
'num_font': {'rotation': -45}
})
chart2.set_y_axis({'name': 'Altitud estrella (° sobre horizonte)'})
chart.set_title({'name': 'Sidereal Time vs Amplitude moving average time 1h'})
chart.set_title({'name': 'Sidereal DateTime vs Amplitude moving average datetime 1h'})
# chart3.set_legend({'none': True})
# chart3.set_x_axis({'name': 'Altitud estrella (° sobre horizonte)'})
# chart3.set_y_axis({'name': 'Amplitud normalizada'})
chart.add_series({
'categories': f'={sheetname}!${col_time_sidereal_adj}${row_start}:${col_time_sidereal_adj}${row_end}',
'values': f'={sheetname}!${col_amplitude_moving_avg_1h_time_sid}${row_start}:${col_amplitude_moving_avg_1h_time_sid}${row_end}',
# 'trendline': {
# 'type': 'moving_average',
# 'period': 2,
# }
})
chart2.add_series({
'categories': f'={sheetname}!${col_datetime_sidereal_adj}${row_start}:${col_datetime_sidereal_adj}${row_end}',
'values': f'={sheetname}!${col_amplitude_moving_avg_1h_datetime_sid}${row_start}:${col_amplitude_moving_avg_1h_datetime_sid}${row_end}',
})
# chart3.add_series({
# 'categories': f'={sheetname}!${col_altitude}${row_start}:${col_altitude}${row_end}',
# 'values': f'={sheetname}!${col_mean_amplitude_1h}${row_start}:${col_mean_amplitude_1h}${row_end}',
# # 'trendline': {
# # 'type': 'moving_average',
# # 'period': 2,
# # },
# })
# Insert the charts into the worksheet.
worksheet.insert_chart(f'B{row_start+1}', chart)
worksheet.insert_chart(f'J{row_start+1}', chart2)
# worksheet.insert_chart(f'R{row_start+1}', chart3)
def plot_ranges_sidereal_time(row_ranges, writer, sheetname):
"""Plots all ranges vs a sidereal time"""
# Get the xlsxwriter objects from the dataframe writer object.
workbook = writer.book
worksheet = writer.sheets[sheetname]
col_datetime_sidereal_adj = get_letter_from_index('datetime_sidereal_adj')
col_amplitude_moving_avg_1h_datetime_sid = get_letter_from_index('amplitude_moving_avg_1h_datetime_sid')
col_time_sidereal_adj = get_letter_from_index('time_sidereal_adj')
col_amplitude_moving_avg_1h_time_sid = get_letter_from_index('amplitude_moving_avg_1h_time_sid')
col_time = get_letter_from_index('time')
col_altitude = get_letter_from_index('average_altitude')
## Amplitude
# Create a chart object
chart = workbook.add_chart({'type': 'scatter'})
chart.set_legend({'none': True})
chart.set_x_axis({
'name': 'Hora ajustada a día sideral (HH:MM)',
'date_axis': True,
'num_format': 'HH:MM',
'num_font': {'rotation': -45}
})
chart.set_y_axis({'name': 'Amplitud normalizada'})
chart.set_title({'name': 'Sidereal Time vs Amplitude moving average time 1h'})
chart2 = workbook.add_chart({'type': 'scatter'})
chart2.set_legend({'none': True})
chart2.set_x_axis({
'name': 'Fecha-Hora ajustada a día sideral (HH:MM)',
'date_axis': True,
'num_format': 'dd/mm HH:MM',
'num_font': {'rotation': -45}
})
chart2.set_y_axis({'name': 'Amplitud normalizada'})
chart.set_title({'name': 'Sidereal DateTime vs Amplitude moving average datetime 1h'})
# chart3 = workbook.add_chart({'type': 'scatter'})
# chart3.set_legend({'none': True})
# chart3.set_x_axis({
# 'name': 'Altitud estrella (° sobre horizonte)',
# })
# chart3.set_y_axis({'name': 'Amplitud normalizada promedio del desplazamiento franjas)'})
for tuple in row_ranges:
# Configure the series of the chart from the dataframe data.
row_start = tuple[0]
row_end = tuple[1]
chart.add_series({
'categories': f'={sheetname}!${col_time_sidereal_adj}${row_start}:${col_time_sidereal_adj}${row_end}',
'values': f'={sheetname}!${col_amplitude_moving_avg_1h_time_sid}${row_start}:${col_amplitude_moving_avg_1h_time_sid}${row_end}',
})
chart2.add_series({
'categories': f'={sheetname}!${col_datetime_sidereal_adj}${row_start}:${col_datetime_sidereal_adj}${row_end}',
'values': f'={sheetname}!${col_amplitude_moving_avg_1h_datetime_sid}${row_start}:${col_amplitude_moving_avg_1h_datetime_sid}${row_end}',
})
# chart3.add_series({
# 'categories': f'={sheetname}!$M${row_start}:$M${row_end}',
# 'values': f'={sheetname}!$V${row_start}:$V${row_end}',
# 'trendline': {
# 'type': 'moving_average',
# 'period': 2,
# },
# })
# Insert the chart2 into the worksheet.
worksheet.insert_chart(f'C10', chart)
worksheet.insert_chart(f'J10', chart2)
# worksheet.insert_chart(f'S6', chart3)
def save_colored_spreadsheet(sourcefile, df, row_ranges, make_plot=True):
"""Saves a colored spreadsheet from df row_ranges, also plots charts """
path, extension = os.path.splitext(sourcefile)
filename = path.split('/')[-1]
output_file = os.path.join(ANALYSIS_OUTPUT_PATH, f'{filename}.xlsx')
num_columns = len(df.columns)
last_column = 'ZZ' # chr(ord('A') + num_columns - 1)
sheetname = 'ColoredSets'
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter(output_file, engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name=sheetname, index=False)
# Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets[sheetname]
# Add a format. Light red fill with dark red text.
formats = [
workbook.add_format({'bg_color': '#FFEB9C',
'font_color': '#000000'}),
workbook.add_format({'bg_color': '#C6EFCE',
'font_color': '#000000'})
]
for i, tuple in enumerate(row_ranges):
row_start, row_end = tuple
formatnum = i%2
# Apply a conditional format to the cell range.
textrange = f'A{row_start}:{last_column}{row_end}'
# print(textrange)
worksheet.conditional_format(textrange,
{'type': 'no_blanks',
'format': formats[formatnum]})
if make_plot:
plot_range(tuple, writer, sheetname)
if make_plot:
plot_ranges_sidereal_time(row_ranges, writer, sheetname)
writer.save()
a=1
return output_file
def main():
global columns
# read analisys source file
analysis_sourcefile = os.path.join(ANALYSIS_PATH, ANALYSIS_FILE)
df = pd.read_csv(analysis_sourcefile)
# filter df to 'promediadas normalizadas'
df = df[(df['figure_type']=='normalized') & (df['grouping_type']=='r10s10')]
# convert datetime column to datetime
try:
df['datetime'] = pd.to_datetime(df['datetime'], format="%d-%m-%y %H:%M")
except Exception:
df['datetime'] = pd.to_datetime(df['datetime'], format="%Y-%m-%d %H:%M")
# sorting by datetime
df.sort_values(by='datetime', inplace=True, ignore_index=True)
df.reset_index(drop=True, inplace=True)
# print(df)
# add sidereal datetime and time
# sidereal_solar_day_ratio = (24*60*60) / 86164.4
sidereal_solar_day_ratio = 86164.4 / (24*60*60)
df['datetime_epoch'] = (df['datetime'] - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')
initial_datetime = df.iloc[0]['datetime_epoch']
df['sidereal_datetime_epoch'] = ((df['datetime_epoch'] - initial_datetime) * sidereal_solar_day_ratio) + initial_datetime
df['datetime_sidereal_adj'] = pd.to_datetime(df['sidereal_datetime_epoch'], unit='s', origin='unix')
df['time'] = df['datetime'].apply(lambda dt: dt.replace(day=1,month=1, year=1970))
df['time_sidereal_adj'] = df['datetime_sidereal_adj'].apply(lambda dt: dt.replace(day=1,month=1, year=1970))
df['time_sidereal_adj_base'] = df['time_sidereal_adj'].dt.round(freq='1h')
df['altitude_normalized_adj'] = df['average_altitude']/90
# find row ranges
row_ranges = find_row_ranges(df)
def stderror(window):
return np.std(window) / np.sqrt(np.size(window))
# mean amplitud in windows
df.set_index('datetime_sidereal_adj', inplace=True, drop=False)
df.sort_index(inplace=True)
df['amplitude_moving_avg_1h_datetime_sid'] = df['amplitude'].rolling('1h').mean()
df['amplitude_moving_avg_1h_datetime_sid_stderr'] = df['amplitude'].rolling('1h').apply(stderror)
# mean amplitud sidereal in windows
df.set_index('time_sidereal_adj', inplace=True, drop=False)
df.sort_index(inplace=True)
df['amplitude_moving_avg_1h_time_sid'] = df['amplitude'].rolling('1h').mean()
df['amplitude_moving_avg_1h_time_sid_stderr'] = df['amplitude'].rolling('1h').apply(stderror)
###################################################################
path, extension = os.path.splitext(analysis_sourcefile)
filename = path.split('/')[-1]
output_file = os.path.join(ANALYSIS_OUTPUT_PATH, f'{filename}-bins_1h.xlsx')
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter(output_file, engine='xlsxwriter')
####################################################################
df.set_index('time_sidereal_adj', inplace=True, drop=False)
df.sort_index(inplace=True)
bins_1h = df['amplitude'].resample('1h').mean()
sheetname = 'PromedioAmplitudHora1h'
# Convert the dataframe to an XlsxWriter Excel object.
bins_1h.to_excel(writer, sheet_name=sheetname)
# Get the xlsxwriter workbook and worksheet objects.
workbook = writer.book
worksheet = writer.sheets[sheetname]
chart = workbook.add_chart({'type': 'scatter'})
chart.set_title({'name': 'Amplitud vs Hora (ajustada sideral)'})
chart.add_series({
'categories': f'={sheetname}!$A2:$A25',
'values': f'={sheetname}!$B2:$B25',
})
chart.set_x_axis({
'name': 'Hora Sideral (HH:MM)',
'date_axis': True,
'num_format': 'HH:MM',
'num_font': {'rotation': -45},
'major_unit': 1/12,
'min': 25569.0,
'max': 25570.0,
})
worksheet.insert_chart(f'C1', chart)
df.set_index('datetime_sidereal_adj', inplace=True, drop=False)
df.sort_index(inplace=True)
bins_1h = df['amplitude'].resample('1h').mean()
sheetname = 'PromedioAmplitudFechaHora1h'
# Convert the dataframe to an XlsxWriter Excel object.
bins_1h.to_excel(writer, sheet_name=sheetname)
# Get the xlsxwriter workbook and worksheet objects.
worksheet = writer.sheets[sheetname]
chart = workbook.add_chart({'type': 'scatter'})
chart.set_title({'name': 'Amplitud vs Fecha-Hora (ajustada sideral)'})
chart.add_series({
'categories': f'={sheetname}!$A2:$A{row_ranges[-1][1]}',
'values': f'={sheetname}!$B2:$B{row_ranges[-1][1]}',
})
chart.set_x_axis({
'name': 'Fecha-Hora Sideral (dd/mmHH:MM)',
'date_axis': True,
'num_format': 'dd/mm HH:MM',
'num_font': {'rotation': -45},
'major_unit': 1/12,
'major_gridlines': {
'visible': True,
},
# 'min': 25569.0,
# 'max': 25570.0,
})
worksheet.insert_chart(f'C1', chart)
writer.save()
df.sort_values(by='datetime', inplace=True, ignore_index=True)
df.reset_index(drop=True, inplace=True)
columns = list(df.columns)
output_file = save_colored_spreadsheet(analysis_sourcefile, df, row_ranges, make_plot=MAKE_PLOTS)
print(f'Done! wrote: {output_file}')
a=1
if __name__ == "__main__":
MAKE_PLOTS = True
ANALYSIS_FILES = [
# "180818-181216-filtered.csv",
# "180818-181216.csv",
# "190802-190804.csv",
# "190910-190930-con-deriva.csv",
# "190910-190930.csv",
# "190910-20190930.csv",
"200515-200531-con-deriva.csv",
"200601-200625-con-deriva.csv",
"200810-200820-con-deriva.csv",
# "200810-200820.csv",
# "200917-200919.csv",
]
ANALYSIS_PATH = "../analysis-summaries"
ANALYSIS_OUTPUT_PATH = "../analysis-excel"
if not os.path.isdir(ANALYSIS_OUTPUT_PATH):
os.mkdir(ANALYSIS_OUTPUT_PATH)
for ANALYSIS_FILE in ANALYSIS_FILES:
main()