-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcovNetModel.py
72 lines (57 loc) · 2.13 KB
/
covNetModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# -*- coding: utf-8 -*-
from __future__ import division
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, z_dim, c_dim,img_size):
"""
Encoder initializer
:param z_dim: dimension of the latent representation
:param c_dim: channels in input images
:param img_size: size of input image
"""
super(Encoder, self).__init__()
self.model_enc = nn.Sequential(
nn.Conv2d(int(c_dim), 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, 4, stride=2, padding=1),
nn.ReLU(),
nn.ZeroPad2d((1,2,1,2)),
nn.Conv2d(64, 64, 4, stride=1, padding=0),
nn.ReLU(),
)
self.fc_mean = nn.Linear(int(64*img_size*img_size/16),z_dim)
def forward(self, x):
# 2 hidden layers encoder
x = self.model_enc(x)
x = x.view(x.size(0),-1)
# compute mean and Laplacian weights
z_mean = self.fc_mean(x)
return z_mean
class Decoder(nn.Module):
def __init__(self,z_dim,c_dim,img_size):
"""
Decoder initializer
:param z_dim: dimension of the latent representation
:param c_dim: channels in input images
:param img_size: size of input image
"""
super(Decoder, self).__init__()
self.img_4 = img_size/4
self.fc = nn.Sequential(
nn.Linear(z_dim,int(self.img_4*self.img_4*64)),
nn.ReLU(),
)
self.model = nn.Sequential(
nn.ConvTranspose2d( 64, 64, 4, stride=1, padding=1),
nn.ReLU(),
nn.ConvTranspose2d( 64, 64, 4, stride=2, padding=2),
nn.ReLU(),
nn.ConvTranspose2d( 64, int(c_dim), 4, stride=2, padding=1),
nn.Sigmoid()
)
def forward(self, z):
batch_size = z.size()[0]
temp_var = self.fc(z)
temp_var = temp_var.view(batch_size,64,int(self.img_4),int(self.img_4))
img= self.model(temp_var)
return img