-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_linear.py
491 lines (414 loc) · 14.5 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from __future__ import absolute_import, division, print_function
import argparse
import datetime
import os
import os.path as path
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributions as D
import torch.nn as nn
from common.data_utils import create_2d_data, fetch, read_3d_data
from common.generators import PoseGenerator
from common.log import Logger, savefig
from common.loss import mpjpe, p_mpjpe
from common.utils import AverageMeter, lr_decay, save_ckpt
from models.iso_gaussian_model import FlowModel, IsoGaussianModel
from models.linear_model import LinearModel, init_weights
from progress.bar import Bar
from torch.utils.data import DataLoader
def parse_args():
parser = argparse.ArgumentParser(description="PyTorch training script")
# General arguments
parser.add_argument(
"-d",
"--dataset",
default="h36m",
type=str,
metavar="NAME",
help="target dataset",
)
parser.add_argument(
"-k",
"--keypoints",
default="gt",
type=str,
metavar="NAME",
help="2D detections to use",
)
parser.add_argument(
"-a",
"--actions",
default="*",
type=str,
metavar="LIST",
help="actions to train/test on, separated by comma, or * for all",
)
parser.add_argument(
"--evaluate",
default="",
type=str,
metavar="FILENAME",
help="checkpoint to evaluate (file name)",
)
parser.add_argument(
"-r",
"--resume",
default="",
type=str,
metavar="FILENAME",
help="checkpoint to resume (file name)",
)
parser.add_argument(
"-c",
"--checkpoint",
default="checkpoint",
type=str,
metavar="PATH",
help="checkpoint directory",
)
parser.add_argument(
"--snapshot",
default=10,
type=int,
help="save models for every #snapshot epochs (default: 20)",
)
# Model arguments
parser.add_argument(
"-b",
"--batch_size",
default=64,
type=int,
metavar="N",
help="batch size in terms of predicted frames",
)
parser.add_argument(
"-e",
"--epochs",
default=200,
type=int,
metavar="N",
help="number of training epochs",
)
parser.add_argument(
"--num_workers",
default=8,
type=int,
metavar="N",
help="num of workers for data loading",
)
parser.add_argument(
"--lr", default=1.0e-3, type=float, metavar="LR", help="initial learning rate"
)
parser.add_argument(
"--lr_decay",
type=int,
default=100000,
help="num of steps of learning rate decay",
)
parser.add_argument(
"--lr_gamma", type=float, default=0.96, help="gamma of learning rate decay"
)
parser.add_argument(
"--no_max",
dest="max_norm",
action="store_false",
help="if use max_norm clip on grad",
)
parser.set_defaults(max_norm=True)
# Experimental
parser.add_argument(
"--downsample",
default=1,
type=int,
metavar="FACTOR",
help="downsample frame rate by factor",
)
args = parser.parse_args()
# Check invalid configuration
if args.resume and args.evaluate:
print("Invalid flags: --resume and --evaluate cannot be set at the same time")
exit()
return args
def main(args):
print("==> Using settings {}".format(args))
print("==> Loading dataset...")
dataset_path = path.join("data", "data_3d_" + args.dataset + ".npz")
if args.dataset == "h36m":
from common.h36m_dataset import TEST_SUBJECTS, TRAIN_SUBJECTS, Human36mDataset
dataset = Human36mDataset(dataset_path)
subjects_train = TRAIN_SUBJECTS
subjects_test = TEST_SUBJECTS
else:
raise KeyError("Invalid dataset")
print("==> Preparing data...")
dataset = read_3d_data(dataset)
print("==> Loading 2D detections...")
keypoints = create_2d_data(
path.join("data", "data_2d_" + args.dataset + "_" + args.keypoints + ".npz"),
dataset,
)
action_filter = None if args.actions == "*" else args.actions.split(",")
if action_filter is not None:
action_filter = map(lambda x: dataset.define_actions(x)[0], action_filter)
print("==> Selected actions: {}".format(action_filter))
stride = args.downsample
# cudnn.benchmark = True
device = torch.device("cpu")
# Create model
print("==> Creating model...")
num_joints = dataset.skeleton().num_joints()
model_pos = LinearModel(num_joints * 2, (num_joints - 1) * 3).to(device)
model_pos.apply(init_weights)
print(
"==> Total parameters: {:.2f}M".format(
sum(p.numel() for p in model_pos.parameters()) / 1000000.0
)
)
model_gauss = IsoGaussianModel((num_joints - 1) * 3).to(device)
criterion = nn.MSELoss(reduction="mean").to(device)
optimizer = torch.optim.Adam(model_pos.parameters(), lr=args.lr)
# Optionally resume from a checkpoint
if args.resume or args.evaluate:
ckpt_path = args.resume if args.resume else args.evaluate
if path.isfile(ckpt_path):
print("==> Loading checkpoint '{}'".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location=device)
start_epoch = ckpt["epoch"]
error_best = ckpt["error"]
glob_step = ckpt["step"]
lr_now = ckpt["lr"]
model_pos.load_state_dict(ckpt["state_dict"])
optimizer.load_state_dict(ckpt["optimizer"])
print(
"==> Loaded checkpoint (Epoch: {} | Error: {})".format(
start_epoch, error_best
)
)
gauss_path = "./ckpt_iso_gaussian_log_prob.pth.tar"
if path.isfile(gauss_path):
ckpt = torch.load(gauss_path, map_location=device)
model_gauss.load_state_dict(ckpt["state_dict"])
if args.resume:
ckpt_dir_path = path.dirname(ckpt_path)
logger = Logger(path.join(ckpt_dir_path, "log.txt"), resume=True)
else:
raise RuntimeError("==> No checkpoint found at '{}'".format(ckpt_path))
else:
start_epoch = 0
error_best = None
glob_step = 0
lr_now = args.lr
ckpt_dir_path = path.join(args.checkpoint, datetime.datetime.now().isoformat())
if not path.exists(ckpt_dir_path):
os.makedirs(ckpt_dir_path)
print("==> Making checkpoint dir: {}".format(ckpt_dir_path))
logger = Logger(os.path.join(ckpt_dir_path, "log.txt"))
logger.set_names(
["epoch", "lr", "loss_train", "error_eval_p1", "error_eval_p2"]
)
if args.evaluate:
print("==> Evaluating...")
if action_filter is None:
action_filter = dataset.define_actions()
errors_p1 = np.zeros(len(action_filter))
errors_p2 = np.zeros(len(action_filter))
vals = np.zeros((21, 0, 16))
for i, action in enumerate(action_filter):
print(action)
poses_valid, poses_valid_2d, actions_valid = fetch(
subjects_test, dataset, keypoints, [action], stride
)
valid_loader = DataLoader(
PoseGenerator(poses_valid, poses_valid_2d, actions_valid),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
vals = evaluate(valid_loader, model_pos, model_gauss, device, vals)
print(np.median(vals.mean(1), axis=-1))
exit(0)
poses_train, poses_train_2d, actions_train = fetch(
subjects_train, dataset, keypoints, action_filter, stride
)
train_loader = DataLoader(
PoseGenerator(poses_train, poses_train_2d, actions_train),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
)
poses_valid, poses_valid_2d, actions_valid = fetch(
subjects_test, dataset, keypoints, action_filter, stride
)
valid_loader = DataLoader(
PoseGenerator(poses_valid, poses_valid_2d, actions_valid),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
for epoch in range(start_epoch, args.epochs):
print("\nEpoch: %d | LR: %.8f" % (epoch + 1, lr_now))
# Train for one epoch
epoch_loss, lr_now, glob_step = train(
train_loader,
model_pos,
criterion,
optimizer,
device,
args.lr,
lr_now,
glob_step,
args.lr_decay,
args.lr_gamma,
max_norm=args.max_norm,
)
# Evaluate
error_eval_p1, error_eval_p2 = evaluate(valid_loader, model_pos, device)
# Update log file
logger.append([epoch + 1, lr_now, epoch_loss, error_eval_p1, error_eval_p2])
# Save checkpoint
if error_best is None or error_best > error_eval_p1:
error_best = error_eval_p1
save_ckpt(
{
"epoch": epoch + 1,
"lr": lr_now,
"step": glob_step,
"state_dict": model_pos.state_dict(),
"optimizer": optimizer.state_dict(),
"error": error_eval_p1,
},
ckpt_dir_path,
suffix="best",
)
if (epoch + 1) % args.snapshot == 0:
save_ckpt(
{
"epoch": epoch + 1,
"lr": lr_now,
"step": glob_step,
"state_dict": model_pos.state_dict(),
"optimizer": optimizer.state_dict(),
"error": error_eval_p1,
},
ckpt_dir_path,
)
logger.close()
logger.plot(["loss_train", "error_eval_p1"])
savefig(path.join(ckpt_dir_path, "log.eps"))
return
def train(
data_loader,
model_pos,
criterion,
optimizer,
device,
lr_init,
lr_now,
step,
decay,
gamma,
max_norm=True,
):
batch_time = AverageMeter()
data_time = AverageMeter()
epoch_loss_3d_pos = AverageMeter()
# Switch to train mode
torch.set_grad_enabled(True)
model_pos.train()
end = time.time()
bar = Bar("Train", max=len(data_loader))
for i, (targets_3d, inputs_2d, _) in enumerate(data_loader):
# Measure data loading time
data_time.update(time.time() - end)
num_poses = targets_3d.size(0)
step += 1
if step % decay == 0 or step == 1:
lr_now = lr_decay(optimizer, step, lr_init, decay, gamma)
targets_3d, inputs_2d = targets_3d[:, 1:, :].to(device), inputs_2d.to(
device
) # Remove hip joint for 3D poses
outputs_3d = model_pos(inputs_2d.view(num_poses, -1)).view(num_poses, -1, 3)
optimizer.zero_grad()
loss_3d_pos = criterion(outputs_3d, targets_3d)
loss_3d_pos.backward()
if max_norm:
nn.utils.clip_grad_norm_(model_pos.parameters(), max_norm=1)
optimizer.step()
epoch_loss_3d_pos.update(loss_3d_pos.item(), num_poses)
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
bar.suffix = (
"({batch}/{size}) Data: {data:.6f}s | Batch: {bt:.3f}s | Total: {ttl:} | ETA: {eta:} "
"| Loss: {loss: .4f}".format(
batch=i + 1,
size=len(data_loader),
data=data_time.avg,
bt=batch_time.avg,
ttl=bar.elapsed_td,
eta=bar.eta_td,
loss=epoch_loss_3d_pos.avg,
)
)
bar.next()
bar.finish()
return epoch_loss_3d_pos.avg, lr_now, step
def evaluate(data_loader, model_pos, gauss_model, device, vals=None):
batch_time = AverageMeter()
data_time = AverageMeter()
epoch_loss_3d_pos = AverageMeter()
epoch_loss_3d_pos_procrustes = AverageMeter()
# Switch to evaluate mode
torch.set_grad_enabled(False)
model_pos.eval()
end = time.time()
bar = Bar("Eval ", max=len(data_loader))
for i, (targets_3d, inputs_2d, _) in enumerate(data_loader):
# Measure data loading time
data_time.update(time.time() - end)
num_poses = targets_3d.size(0)
inputs_2d = inputs_2d.to(device)
if vals is None:
vals = np.zeros((21, 64, 16))
with torch.no_grad():
outputs_3d = model_pos(inputs_2d.view(num_poses, -1))
# outputs_3d_mean[:, :, :] -= outputs_3d_mean[:, :1, :] # Zero-centre the root (hip)
# loss = gauss_model(outputs_3d_mean, targets_3d, n_samples=(num_poses, 200)).mean()
# loss.backward()
samples = gauss_model.sample(
outputs_3d.view(num_poses, -1), n_samples=(num_poses, 200)
)
samples = samples.view(*(num_poses, 200), -1, 3).swapaxes(0, 1)
samples = np.insert(samples, 0, 0, axis=2)
# mpjpe_error = mpjpe(samples, targets_3d.unsqueeze(0).repeat(200, 1, 1, 1)).min(0).values
# mpjpe_error = mpjpe_error.mean().item() * 1000
#
# epoch_loss_3d_pos.update(mpjpe_error, num_poses)
# joint_vars = torch.ones_like(outputs_3d)
# joint_vars[:, 0, :] = 0.00001
# joint_vars[:, 7, :] = 0.00001
# joint_vars[:, 8, :] = 0.00001
# joint_vars[:, 9, :] = 0.00001
# distribution = D.Normal(outputs_3d, torch.ones(*outputs_3d.shape) * joint_vars * 0.01)
# samples = distribution.sample((200, ))
outputs_3d = outputs_3d.view(1, num_poses, 15, 3).repeat(1, 1, 1, 1)
outputs_3d = np.insert(outputs_3d, 0, 0, axis=-2)
errors = ((outputs_3d - samples) ** 2).sum(-1) ** 0.5
true_error = ((outputs_3d - targets_3d) ** 2).sum(-1) ** 0.5
quantiles = np.arange(0, 1.05, 0.05)
q_vals = np.quantile(errors, quantiles, 0)
v = (q_vals >= true_error.numpy().squeeze()).astype(int)
vals = np.concatenate((vals, v), axis=1)
cal_curve = np.median(vals.mean(1), axis=-1)
ECE = np.abs(cal_curve - quantiles).mean()
print("ECE: ", ECE)
print(cal_curve)
bar.finish()
return vals
if __name__ == "__main__":
main(parse_args())