-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
509 lines (454 loc) · 17.3 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import os
import sys
import time
import argparse
import re
from datetime import date
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
import numpy as np
from mmcv import Config
from nltk.metrics.distance import edit_distance
from tqdm import tqdm
from tools.utils import CTCLabelConverter, AttnLabelConverter, Averager
from data.dataset import hierarchical_dataset, AlignCollate
from modules.model import Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def benchmark_all_eval(model, criterion, converter, opt, calculate_infer_time=False):
if opt.eval_type == "benchmark":
"""evaluation with 6 benchmark evaluation datasets"""
eval_data_list = [
"IIIT5k_3000",
"SVT",
"IC13_1015",
"IC15_2077",
"SVTP",
"CUTE80",
]
opt.eval_data = "data_CVPR2021/evaluation/benchmark/"
elif opt.eval_type == "addition":
"""evaluation with 7 additionally collected evaluation datasets"""
eval_data_list = [
"5.COCO",
"6.RCTW17",
"7.Uber",
"8.ArT",
"9.LSVT",
"10.MLT19",
"11.ReCTS",
]
opt.eval_data = "data_CVPR2021/evaluation/addition/"
elif opt.eval_type == "IL_STR":
"""evaluation with IL_STR datasets"""
eval_data_list = ["Latin", "Chinese", "Arabic", "Japanese", "Korean", "Bangla", "Hindi", "Symbols"]
opt.eval_data = "../dataset/MLT2019/test_2019/"
if calculate_infer_time:
eval_batch_size = (
1 # batch_size should be 1 to calculate the GPU inference time per image.
)
else:
eval_batch_size = opt.batch_size
accuracy_list = []
total_forward_time = 0
total_eval_data_number = 0
total_correct_number = 0
log = open(f"./result/{opt.exp_name}/log_all_evaluation.txt", "a")
dashed_line = "-" * 80
print(dashed_line)
log.write(dashed_line + "\n")
for eval_data in eval_data_list:
eval_data_path= opt.eval_data+eval_data
# eval_data_path = os.path.join(opt.eval_data, eval_data)
AlignCollate_eval = AlignCollate(opt, mode="test")
eval_data, eval_data_log = hierarchical_dataset(
root=eval_data_path, opt=opt, mode="test"
)
eval_loader = torch.utils.data.DataLoader(
eval_data,
batch_size=eval_batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_eval,
pin_memory=True,
)
_, accuracy_by_best_model, ned_score, _, _, _, infer_time, length_of_data = validation(
model, criterion, eval_loader, converter, opt, tqdm_position=0
)
accuracy_list.append(f"{accuracy_by_best_model:0.2f}")
total_forward_time += infer_time
total_eval_data_number += len(eval_data)
total_correct_number += accuracy_by_best_model * length_of_data
log.write(eval_data_log)
print(f"Acc {accuracy_by_best_model:0.2f}")
log.write(f"Acc {accuracy_by_best_model:0.2f}\n")
print(f"Ned {ned_score:0.2f}")
log.write(f"Ned {ned_score:0.2f}\n")
print(dashed_line)
log.write(dashed_line + "\n")
averaged_forward_time = total_forward_time / total_eval_data_number * 1000
total_accuracy = total_correct_number / total_eval_data_number
params_num = sum([np.prod(p.size()) for p in model.parameters()])
eval_log = "accuracy: "
for name, accuracy in zip(eval_data_list, accuracy_list):
eval_log += f"{name}: {accuracy}\t"
eval_log += f"total_accuracy: {total_accuracy:0.2f}\t"
eval_log += f"averaged_infer_time: {averaged_forward_time:0.3f}\t# parameters: {params_num/1e6:0.2f}"
print(eval_log)
log.write(eval_log + "\n")
# for convenience
print("\t".join(accuracy_list))
print(f"Total_accuracy:{total_accuracy:0.2f}")
log.write("\t".join(accuracy_list) + "\n")
log.write(f"Total_accuracy:{total_accuracy:0.2f}" + "\n")
log.close()
# for convenience
today = date.today()
if opt.log_multiple_test:
log_all_model = open(f"./evaluation_log/log_multiple_test_{today}.txt", "a")
log_all_model.write("\t".join(accuracy_list) + "\n")
else:
log_all_model = open(
f"./evaluation_log/log_all_model_evaluation_{today}.txt", "a"
)
log_all_model.write(
f"./result/{opt.exp_name}\tTotal_accuracy:{total_accuracy:0.2f}\n"
)
log_all_model.write("\t".join(accuracy_list) + "\n")
log_all_model.close()
return total_accuracy, eval_data_list, accuracy_list
def validation(model, criterion, eval_loader, converter, opt, val_choose="val",tqdm_position=1):
"""validation or evaluation"""
n_correct = 0
norm_ED = 0
length_of_data = 0
infer_time = 0
valid_loss_avg = Averager()
for i, (image_tensors, labels) in tqdm(
enumerate(eval_loader),
total=len(eval_loader),
position=tqdm_position,
leave=False,
):
batch_size = image_tensors.size(0)
length_of_data = length_of_data + batch_size
image = image_tensors.to(device)
# For max length prediction
labels_index, labels_length = converter.encode(
labels, batch_max_length=opt.batch_max_length
)
if "CTC" in opt.Prediction:
start_time = time.time()
if val_choose == "FF":
preds = model(image, cross = False, is_train = False)
elif val_choose == "TF":
preds = model(image,cross = True, is_train = False)
else:
preds = model(image, is_train = False)
if len(preds) == 3 or len(preds) == 4:
preds = preds['logits']
elif len(preds) == 2:
preds = preds['predict']
forward_time = time.time() - start_time
# Calculate evaluation loss for CTC deocder.
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
# permute 'preds' to use CTCloss format
cost = criterion(
preds.log_softmax(2).permute(1, 0, 2),
labels_index,
preds_size,
labels_length,
)
else:
text_for_pred = (
torch.LongTensor(batch_size).fill_(converter.dict["[SOS]"]).to(device)
)
start_time = time.time()
# preds = model(image, text_for_pred, is_train=False)
if val_choose == "FF":
preds = model(image, cross = False,text = text_for_pred, is_train = False)
elif val_choose == "TF":
preds = model(image,cross = True, text = text_for_pred, is_train = False)
else:
preds = model(image, text = text_for_pred, is_train=False)
if len(preds) == 3:
preds = preds['logits']
elif len(preds) == 2:
preds = preds['predict']
forward_time = time.time() - start_time
target = labels_index[:, 1:] # without [SOS] Symbol
cost = criterion(
preds.contiguous().view(-1, preds.shape[-1]),
target.contiguous().view(-1),
)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_size = torch.IntTensor([preds.size(1)] * preds_index.size(0)).to(device)
preds_str = converter.decode(preds_index, preds_size)
infer_time += forward_time
valid_loss_avg.add(cost)
# calculate accuracy & confidence score
preds_prob = F.softmax(preds, dim=2)
preds_max_prob, _ = preds_prob.max(dim=2)
confidence_score_list = []
for gt, prd, prd_max_prob in zip(labels, preds_str, preds_max_prob):
if "Attn" in opt.Prediction:
prd_EOS = prd.find("[EOS]")
prd = prd[:prd_EOS] # prune after "end of sentence" token ([EOS])
prd_max_prob = prd_max_prob[:prd_EOS]
"""
In our experiment, if the model predicts at least one [UNK] token, we count the word prediction as incorrect.
To not take account of [UNK] token, use the below line.
prd = prd.replace('[UNK]', '')
"""
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting. = same with ASTER
# gt = gt.lower()
# prd = prd.lower()
# alphanumeric_case_insensitve = "0123456789abcdefghijklmnopqrstuvwxyz"
# out_of_alphanumeric_case_insensitve = f"[^{alphanumeric_case_insensitve}]"
# gt = re.sub(out_of_alphanumeric_case_insensitve, "", gt)
# prd = re.sub(out_of_alphanumeric_case_insensitve, "", prd)
if opt.NED:
# ICDAR2019 Normalized Edit Distance
if len(gt) == 0 or len(prd) == 0:
norm_ED += 0
elif len(gt) > len(prd):
norm_ED += 1 - edit_distance(prd, gt) / len(gt)
else:
norm_ED += 1 - edit_distance(prd, gt) / len(prd)
if prd == gt:
n_correct += 1
# calculate confidence score (= multiply of prd_max_prob)
try:
confidence_score = prd_max_prob.cumprod(dim=0)[-1]
except:
confidence_score = 0 # for empty pred case, when prune after "end of sentence" token ([EOS])
confidence_score_list.append(confidence_score)
ned_score=None
if opt.NED:
# ICDAR2019 Normalized Edit Distance. In web page, they report % of norm_ED (= norm_ED * 100).
ned_score = norm_ED / float(length_of_data) * 100
score = n_correct / float(length_of_data) * 100 # accuracy
return (
valid_loss_avg.val(),
score,
ned_score,
preds_str,
confidence_score_list,
labels,
infer_time,
length_of_data,
)
def test(opt):
"""model configuration"""
opt.character = []
f = open(opt.train_data+"/dict.txt")
line = f.readline()
while line:
opt.character.append(line.strip("\n"))
# print(line)
line = f.readline()
f.close()
if "CTC" in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.sos_token_index = converter.dict["[SOS]"]
opt.eos_token_index = converter.dict["[EOS]"]
opt.num_class = len(converter.character)
model = Model(opt)
print(
"model input parameters",
opt.imgH,
opt.imgW,
opt.num_fiducial,
opt.input_channel,
opt.output_channel,
opt.hidden_size,
opt.num_class,
opt.batch_max_length,
opt.Transformation,
opt.FeatureExtraction,
opt.SequenceModeling,
opt.Prediction,
)
model = torch.nn.DataParallel(model).to(device)
# load model
print("loading pretrained model from %s" % opt.saved_model)
try:
model.load_state_dict(torch.load(opt.saved_model, map_location=device))
except:
print(
"*** pretrained model not match strictly *** and thus load_state_dict with strict=False mode"
)
# pretrained_state_dict = torch.load(opt.saved_model)
# for name in pretrained_state_dict:
# print(name)
model.load_state_dict(
torch.load(opt.saved_model, map_location=device), strict=False
)
opt.exp_name = "_".join(opt.saved_model.split("/")[1:])
# print(model)
""" keep evaluation model and result logs """
os.makedirs(f"./result/{opt.exp_name}", exist_ok=True)
# os.system(f'cp {opt.saved_model} ./result/{opt.exp_name}/')
""" setup loss """
if "CTC" in opt.Prediction:
criterion = torch.nn.CTCLoss(zero_infinity=True).to(device)
else:
# ignore [PAD] token
criterion = torch.nn.CrossEntropyLoss(ignore_index=converter.dict["[PAD]"]).to(
device
)
""" evaluation """
model.eval()
with torch.no_grad():
if (
opt.eval_type
): # evaluate 6 benchmark evaluation datasets or 7 additionally collected evaluation datasets
benchmark_all_eval(model, criterion, converter, opt)
else:
log = open(f"./result/{opt.exp_name}/log_evaluation.txt", "a")
AlignCollate_eval = AlignCollate(opt, mode="test")
eval_data, eval_data_log = hierarchical_dataset(
root=opt.eval_data, opt=opt, mode="test"
)
eval_loader = torch.utils.data.DataLoader(
eval_data,
batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_eval,
pin_memory=True,
)
_, score_by_best_model, ned_score,_, _, _, _, _ = validation(
model, criterion, eval_loader, converter, opt
)
log.write(eval_data_log)
print(f"best acc score {score_by_best_model:0.2f}")
print(f"best ned score {ned_score:0.2f}")
log.write(f"best acc score{score_by_best_model:0.2f}\n")
log.write(f"best ned score{ned_score:0.2f}\n")
log.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
default="config/crnn.py",
help="path to validation dataset",
)
parser.add_argument("--eval_data", help="path to evaluation dataset")
parser.add_argument(
"--eval_type",
type=str,
help="evaluate 6 benchmark evaluation datasets or 7 additionally collected evaluation datasets |benchmark|addition|",
)
parser.add_argument(
"--workers", type=int, help="number of data loading workers", default=4
)
parser.add_argument("--batch_size", type=int, default=512, help="input batch size")
parser.add_argument(
"--saved_model", help="path to saved_model to evaluation"
)
parser.add_argument(
"--log_multiple_test", action="store_true", help="log_multiple_test"
)
""" Data processing """
parser.add_argument(
"--batch_max_length", type=int, default=25, help="maximum-label-length"
)
parser.add_argument(
"--imgH", type=int, default=32, help="the height of the input image"
)
parser.add_argument(
"--imgW", type=int, default=100, help="the width of the input image"
)
parser.add_argument(
"--character",
type=str,
default="0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~",
help="character label",
)
parser.add_argument(
"--NED", action="store_true", help="For Normalized edit_distance"
)
parser.add_argument(
"--Aug",
type=str,
default="None",
help="whether to use augmentation |None|Blur|Crop|Rot|",
)
# parser.add_argument(
# "--semi",
# type=str,
# default="None",
# help="whether to use semi-supervised learning |None|PL|MT|",
# )
""" Model Architecture """
parser.add_argument("--model_name", type=str, help="CRNN|TRBA")
parser.add_argument(
"--num_fiducial",
type=int,
default=20,
help="number of fiducial points of TPS-STN",
)
parser.add_argument(
"--input_channel",
type=int,
default=3,
help="the number of input channel of Feature extractor",
)
parser.add_argument(
"--output_channel",
type=int,
default=512,
help="the number of output channel of Feature extractor",
)
parser.add_argument(
"--hidden_size", type=int, default=256, help="the size of the LSTM hidden state"
)
arg = parser.parse_args()
cfg = Config.fromfile(arg.config)
# optcfg.model
# opt.update(arg)
# cfg.merge_from_dict(cfg.model)
# opt.merge_from_dict(cfg.train)
# opt.merge_from_dict(cfg.optimizer)
opt = {}
opt.update(cfg.common)
opt.update(cfg.model)
opt.update(cfg.train)
opt.update(cfg.optimizer)
opt.update(cfg.test)
opt = argparse.Namespace(**opt)
# opt.saved_model=cfg.test.saved_model
# print(cfg.test.saved_model)
if opt.model_name == "CRNN":
opt.Transformation = "None"
opt.FeatureExtraction = "VGG"
opt.SequenceModeling = "BiLSTM"
opt.Prediction = "CTC"
elif opt.model_name == "TRBA":
opt.Transformation = "TPS"
opt.FeatureExtraction = "ResNet"
opt.SequenceModeling = "BiLSTM"
opt.Prediction = "Attn"
elif opt.model_name == "RBA": # RBA
opt.Transformation = "None"
opt.FeatureExtraction = "ResNet"
opt.SequenceModeling = "BiLSTM"
opt.Prediction = "Attn"
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
if opt.num_gpu > 1:
print(
"We recommend to use 1 GPU, check your GPU number, you would miss CUDA_VISIBLE_DEVICES=0 or typo"
)
print("To use multi-gpu setting, remove or comment out these lines")
sys.exit()
if sys.platform == "win32":
opt.workers = 0
os.makedirs(f"./evaluation_log", exist_ok=True)
test(opt)