-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter.py
53 lines (43 loc) · 1.47 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
class Plotter(object):
def __init__(self, xlabel, ylabel, legend_loc):
self.plt = plt
self.xlabel = xlabel
self.ylabel = ylabel
self.legend_loc = legend_loc
def plot_decision_regions(self, X, y, classifier, resolution=0.02):
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
x1_min = X[:, 0].min() - 1
x1_max = X[:, 0].max() + 1
x2_min = X[:, 1].min() - 1
x2_max = X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(
np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution)
)
Z = classifier.predict(
np.array(
[xx1.ravel(), xx2.ravel()]
).T
)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(
x=X[y == cl, 0],
y=X[y == cl, 1],
alpha=0.8,
c=cmap(idx),
marker=markers[idx],
label=cl
)
plt.xlabel(self.xlabel)
plt.ylabel(self.ylabel)
plt.legend(loc=self.legend_loc)
plt.show()