diff --git a/model_train.py b/model_train.py index 1c6e49f..c8595ef 100644 --- a/model_train.py +++ b/model_train.py @@ -167,7 +167,7 @@ def get_metrics(data, craters, dim, model, beta=1): continue (N_match, N_csv, N_detect, maxr, elo, ela, er, csv_duplicates) = tmt.template_match_t2c(preds[i], csvs[i], - rmv_oor_csvs=1) + rmv_oor_csvs=0) if N_match > 0: p = float(N_match) / float(N_match + (N_detect - N_match)) r = float(N_match) / float(N_csv) @@ -204,12 +204,15 @@ def get_metrics(data, craters, dim, model, beta=1): print("""mean and std of (N_detect - N_match)/N_csv (fraction of "craters that are new, 2) = %f, %f""" % (np.mean(frac_new2), np.std(frac_new2))) - print("mean and std fractional longitude difference = %f, %f" % - (np.mean(err_lo), np.std(err_lo))) - print("mean and std fractional latitude difference = %f, %f" % - (np.mean(err_la), np.std(err_la))) - print("mean and std fractional radius difference = %f, %f" % - (np.mean(err_r), np.std(err_r))) + print("median and IQR fractional longitude diff = %f, 0.25:%f, 0.75:%f" % + (np.median(err_lo), np.percentile(err_lo, 25), + np.percentile(err_lo, 75))) + print("median and IQR fractional latitude diff = %f, 0.25:%f, 0.75:%f" % + (np.median(err_la), np.percentile(err_la, 25), + np.percentile(err_la, 75))) + print("median and IQR fractional radius diff = %f, 0.25:%f, 0.75:%f" % + (np.median(err_r), np.percentile(err_r, 25), + np.percentile(err_r, 75))) print("""mean and std of maximum detected pixel radius in an image = %f, %f""" % (np.mean(maxrad), np.std(maxrad))) print("""absolute maximum detected pixel radius over all images =