forked from segmentio/go-hll
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsparse_test.go
325 lines (251 loc) · 8.7 KB
/
sparse_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
package hll
import (
"fmt"
"math/bits"
"math/rand"
"testing"
"github.com/stretchr/testify/assert"
"github.com/stretchr/testify/require"
)
var sparseTestSettings = Settings{
Log2m: 11,
Regwidth: 5,
ExplicitThreshold: 0,
SparseEnabled: true,
}
func Test_Add_Sparse(t *testing.T) {
{ // insert an element with register value 1 (minimum set value)
registerIndex := 0
registerValue := 1
rawValue := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue)
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
hll.AddRaw(rawValue)
assertOneRegisterSet(t, hll, registerIndex, byte(registerValue))
}
{ // insert an element with register value 31 (maximum set value)
registerIndex := 0
registerValue := 31
rawValue := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue)
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
hll.AddRaw(rawValue)
assertOneRegisterSet(t, hll, registerIndex, byte(registerValue))
}
{ // insert an element that could overflow the register (past 31)
registerIndex := 0
registerValue := 36
rawValue := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue)
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
hll.AddRaw(rawValue)
assertOneRegisterSet(t, hll, registerIndex, byte(31) /*register max*/)
}
{ // insert duplicate elements, observe no change
registerIndex := 0
registerValue := 1
rawValue := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue)
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
hll.AddRaw(rawValue)
hll.AddRaw(rawValue)
assertOneRegisterSet(t, hll, registerIndex, byte(registerValue))
}
{ // insert elements that increase a register's value
registerIndex := 0
registerValue := 1
rawValue := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue)
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
hll.AddRaw(rawValue)
registerValue2 := 2
rawValue2 := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue2)
hll.AddRaw(rawValue2)
assertOneRegisterSet(t, hll, registerIndex, byte(registerValue2))
}
{ // insert elements that have lower register values, observe no change
registerIndex := 0
registerValue := 2
rawValue := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue)
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
hll.AddRaw(rawValue)
registerValue2 := 1
rawValue2 := constructHllValue(sparseTestSettings.Log2m, registerIndex, registerValue2)
hll.AddRaw(rawValue2)
assertOneRegisterSet(t, hll, registerIndex, byte(registerValue))
}
}
func Test_Union_Sparse(t *testing.T) {
{ // two disjoint multisets should union properly
hllA, _ := NewHll(sparseTestSettings)
hllA.AddRaw(constructHllValue(sparseTestSettings.Log2m, 1, 1))
hllB, _ := NewHll(sparseTestSettings)
hllB.AddRaw(constructHllValue(sparseTestSettings.Log2m, 2, 1))
hllA.Union(hllB)
assertSparse(t, hllA)
assert.Equal(t, uint64(3), hllA.Cardinality())
assertRegisterPresent(t, hllA, 1, 1)
assertRegisterPresent(t, hllA, 2, 1)
assert.Equal(t, uint64(2), hllB.Cardinality())
}
{ // two exactly overlapping multisets should union properly
hllA, _ := NewHll(sparseTestSettings)
hllA.AddRaw(constructHllValue(sparseTestSettings.Log2m, 1, 10))
hllB, _ := NewHll(sparseTestSettings)
hllB.AddRaw(constructHllValue(sparseTestSettings.Log2m, 1, 13))
hllA.Union(hllB)
assertSparse(t, hllA)
assert.Equal(t, uint64(2), hllA.Cardinality())
assertOneRegisterSet(t, hllA, 1, 13)
}
{ // overlapping multisets should union properly
hllA, _ := NewHll(sparseTestSettings)
hllB, _ := NewHll(sparseTestSettings)
// register index = 3
rawValueA := constructHllValue(sparseTestSettings.Log2m, 3, 11)
// register index = 4
rawValueB := constructHllValue(sparseTestSettings.Log2m, 4, 13)
rawValueBPrime := constructHllValue(sparseTestSettings.Log2m, 4, 21)
// register index = 5
rawValueC := constructHllValue(sparseTestSettings.Log2m, 5, 14)
hllA.AddRaw(rawValueA)
hllA.AddRaw(rawValueB)
hllB.AddRaw(rawValueBPrime)
hllB.AddRaw(rawValueC)
hllA.Union(hllB)
// union should have three registers set, with partition B set to the
// max of the two registers
assertRegisterPresent(t, hllA, 3, 11)
assertRegisterPresent(t, hllA, 4, 21 /*max(21,13)*/)
assertRegisterPresent(t, hllA, 5, 14)
}
{ // too-large unions should promote
hllA, _ := NewHll(sparseTestSettings)
hllB, _ := NewHll(sparseTestSettings)
// fill up sets to maxCapacity
for i := 0; i < int(hllA.settings.sparseThreshold); i++ {
hllA.AddRaw(constructHllValue(sparseTestSettings.Log2m, i, 1))
hllB.AddRaw(constructHllValue(sparseTestSettings.Log2m, i+int(hllA.settings.sparseThreshold), 1))
}
hllA.Union(hllB)
assertDense(t, hllA)
}
}
func Test_Clear_Sparse(t *testing.T) {
hll, _ := NewHll(sparseTestSettings)
hll.AddRaw(1)
assertSparse(t, hll)
hll.Clear()
assertEmpty(t, hll)
assert.Equal(t, uint64(0), hll.Cardinality())
}
func Test_ToFromBytes_Sparse(t *testing.T) {
padding := 3
{ // Should work on an empty element
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
bytes := hll.ToBytes()
// assert output length is correct
assert.Equal(t, len(bytes), padding)
inHll, err := FromBytes(bytes)
assert.NoError(t, err)
assert.Nil(t, hll.storage)
assert.Equal(t, uint64(0), inHll.Cardinality())
assertEmpty(t, hll)
}
{ // Should work on a partially filled element
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
for i := 0; i < 3; i++ {
hll.AddRaw(constructHllValue(sparseTestSettings.Log2m, i, i+9))
}
bytes := hll.ToBytes()
// assert output length is correct
assert.Equal(t, padding+6, len(bytes))
inHll, err := FromBytes(bytes)
assert.NoError(t, err)
assertSparse(t, hll)
// assert register values correct
assertElementsEqualSparse(t, hll, inHll)
}
{ // Should work on a full set
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
for i := 0; i < int(hll.settings.sparseThreshold); i++ {
hll.AddRaw(constructHllValue(sparseTestSettings.Log2m, i, (i%9)+1))
}
bytes := hll.ToBytes()
// assert output length is correct
assert.Equal(t, padding+(int(hll.settings.sparseThreshold)*2), len(bytes))
inHll, err := FromBytes(bytes)
assert.NoError(t, err)
assertSparse(t, hll)
// assert register values correct
assertElementsEqualSparse(t, hll, inHll)
}
}
func Test_RandomValues_Sparse(t *testing.T) {
seed := 1 // makes for reproducible tests.
r := rand.NewSource(int64(seed))
for run := 0; run < 100; run++ {
t.Run(fmt.Sprint("run ", run), func(t *testing.T) {
hll, err := NewHll(sparseTestSettings)
require.NoError(t, err)
registers := make(map[int]byte)
for i := 0; i < int(hll.settings.sparseThreshold); i++ {
value := uint64(r.Int63())
reg := getRegisterIndex(value, hll.settings.log2m)
regVal := getRegisterValue(value, hll.settings.log2m)
if registers[reg] < regVal {
registers[reg] = regVal
}
hll.AddRaw(value)
}
for reg, val := range registers {
assertRegisterPresent(t, hll, reg, val)
}
})
}
}
func assertRegisterPresent(t *testing.T, hll Hll, register int, value byte) {
if assert.IsType(t, sparseStorage{}, hll.storage) {
assert.Equal(t, value, hll.storage.(sparseStorage)[int32(register)])
}
}
func assertOneRegisterSet(t *testing.T, hll Hll, register int, value byte) {
if assert.IsType(t, sparseStorage{}, hll.storage) {
assert.Equal(t, value, hll.storage.(sparseStorage)[int32(register)])
assert.Equal(t, len(hll.storage.(sparseStorage)), 1)
}
}
func constructHllValue(log2m int, register int, value int) uint64 {
substreamValue := uint64(1) << uint(value-1)
return (substreamValue << uint(log2m)) | uint64(register)
}
func assertElementsEqualSparse(t *testing.T, hll1 Hll, hll2 Hll) {
if assertSparse(t, hll1) && assertSparse(t, hll2) {
assert.Equal(t, hll1.storage, hll2.storage)
}
}
func getRegisterIndex(value uint64, log2m int) int {
mBitsMask := (1 << uint(log2m)) - 1
return int(value & uint64(mBitsMask))
}
func getRegisterValue(value uint64, log2m int) byte {
substreamValue := value >> uint(log2m)
// The paper does not cover p(0x0), so the special value 0 is used.
// 0 is the original initialization value of the registers, so by
// doing this the HLL simply ignores it. This is acceptable
// because the probability is 1/(2^(2^registerSizeInBits)).
if substreamValue == 0 {
return 0
}
// NOTE : trailing zeros == the 0-based index of the least significant 1 bit.
pW := byte(1 + bits.TrailingZeros64(substreamValue))
max := byte((1 << uint(log2m)) - 1)
if pW > max {
return max
}
return pW
}