-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
202 lines (193 loc) · 7.18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from utils import file, \
iterated_local_search, \
tabu_search, \
constraint_solving, \
genetic_algorithm
from datetime import datetime
import argparse
config = {
'iterated_local_search': {
'worst_acceptance_probability': 0.0,
'number_of_iterations': 1000,
'number_of_individuals': 5,
'shuffle_tolerance': 10,
'number_of_shuffles': 15,
'local_improvement_iterations': 1000,
'local_improvement_mode': 'two_opt'
},
'tabu_search': {
'tabu_size': 20,
'number_of_iterations': 100
},
'genetic_algorithm': {
'number_of_individuals': 5,
'crossover_rate': 0.8,
'number_of_iterations': 1000,
'worst_acceptance_probability': 0.0,
'tournament_size': 5,
'selection_algorithm': 'tournament'
}
}
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Algorithms for solving quadratic assignment problem.')
parser.add_argument(
'-a',
'--algorithm',
help='Choose one of the algorithms: ils (iterative local search), '
'ts (tabu search), '
'cs (constraint solving with Minizinc). Example: ils.',
required=True
)
parser.add_argument(
'-f',
'--filename',
help='Choose filename of the problem from qapdata folder. Example: had12.dat.',
required=True
)
# iterative local search
parser.add_argument(
'-iwap',
'--iterative_worst_acceptance_probability',
help='Worst acceptance probability in iterative local search.',
type=float,
default=config['iterated_local_search']['worst_acceptance_probability']
)
parser.add_argument(
'-inoit',
'--iterative_number_of_iterations',
help='Number of iterations in iterative local search.',
type=int,
default=config['iterated_local_search']['number_of_iterations']
)
parser.add_argument(
'-inoin',
'--iterative_number_of_individuals',
help='Number of individuals in iterative local search.',
type=int,
default=config['iterated_local_search']['number_of_individuals']
)
parser.add_argument(
'-ist',
'--iterative_shuffle_tolerance',
help='Shuffle tolerance in iterative local search.',
type=int,
default=config['iterated_local_search']['shuffle_tolerance']
)
parser.add_argument(
'-inos',
'--iterative_number_of_shuffles',
help='Number of shuffles in iterative local search.',
type=int,
default=config['iterated_local_search']['number_of_shuffles']
)
parser.add_argument(
'-ilii',
'--iterative_local_improvement_iterations',
help='Local improvement iterations in iterative local search.',
type=int,
default=config['iterated_local_search']['local_improvement_iterations']
)
parser.add_argument(
'-ilim',
'--iterative_local_improvement_mode',
help='Local improvement mode in iterative local search. Example: two_opt, three_opt, four_opt.',
default=config['iterated_local_search']['local_improvement_mode']
)
# tabu search
parser.add_argument(
'-ts',
'--tabu_size',
help='Tabu size in tabu search.',
type=int,
default=config['tabu_search']['tabu_size']
)
parser.add_argument(
'-tnoit',
'--tabu_number_of_iterations',
help='Number of iterations in tabu search.',
type=int,
default=config['tabu_search']['number_of_iterations']
)
# genetic algorithm
parser.add_argument(
'-gnoin',
'--genetic_number_of_individuals',
help='Number of individuals in genetic algorithm.',
type=int,
default=config['genetic_algorithm']['number_of_individuals']
)
parser.add_argument(
'-gcr',
'--genetic_crossover_rate',
help='Crossover rate in genetic algorithm.',
type=float,
default=config['genetic_algorithm']['crossover_rate']
)
parser.add_argument(
'-gnoit',
'--genetic_number_of_iterations',
help='Number of iterations in genetic algorithm.',
type=int,
default=config['genetic_algorithm']['number_of_iterations']
)
parser.add_argument(
'-gwap',
'--genetic_worst_acceptance_probability',
help='Worst acceptance probability in genetic algorithm.',
type=float,
default=config['genetic_algorithm']['worst_acceptance_probability']
)
parser.add_argument(
'-gts',
'--genetic_tournament_size',
help='Tournament size in genetic algorithm.',
type=int,
default=config['genetic_algorithm']['tournament_size']
)
parser.add_argument(
'-gsa',
'--genetic_selection_algorithm',
help='Selection algorithm in genetic algorithm. Example: tournament, roulette_wheel.',
default=config['genetic_algorithm']['selection_algorithm']
)
args = vars(parser.parse_args())
flows, distances = file.read_external_file(args['filename'])
start_time = datetime.now()
if args['algorithm'] == 'ils':
assignments, objective_value = iterated_local_search.run_iterated_local_search(
flows=flows,
distances=distances,
number_of_individuals=max(args['iterative_number_of_individuals'], int(0.1 * len(flows))),
number_of_iterations=args['iterative_number_of_iterations'],
shuffle_tolerance=args['iterative_shuffle_tolerance'],
number_of_shuffles=args['iterative_number_of_shuffles'],
local_improvement_iterations=args['iterative_local_improvement_iterations'],
worst_acceptance_probability=args['iterative_worst_acceptance_probability'],
local_improvement_mode=args['iterative_local_improvement_mode']
)
elif args['algorithm'] == 'ts':
algorithm_config = config['tabu_search']
assignments, objective_value = tabu_search.run_tabu_search(
flows=flows,
distances=distances,
tabu_size=args['tabu_size'],
number_of_iterations=args['tabu_number_of_iterations']
)
elif args['algorithm'] == 'cs':
assignments, objective_value = constraint_solving.run_minizinc(flows=flows, distances=distances)
elif args['algorithm'] == 'ga':
assignments, objective_value = genetic_algorithm.run_genetic_algorithm(
flows=flows,
distances=distances,
number_of_individuals=max(args['genetic_number_of_individuals'], int(0.1 * len(flows))),
crossover_rate=args['genetic_crossover_rate'],
number_of_iterations=args['genetic_number_of_iterations'],
worst_acceptance_probability=args['genetic_worst_acceptance_probability'],
tournament_size=args['genetic_tournament_size'],
selection_algorithm=args['genetic_selection_algorithm']
)
else:
raise Exception(f"Algorithm is unknown. Algorithm: {args['algorithm']}.")
end_time = datetime.now()
print(f'Best assignments: {assignments}. Objective value: {objective_value}.')
print(f'Duration: {end_time - start_time}')