-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
88 lines (68 loc) · 2.82 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy as np
import torch
from torchvision import transforms
import scipy.io
import skimage.io
import argparse
from PIL import Image
from dataset import cvt1to3channels
import time
def normalize_image(image):
return 255*((image - np.min(image)) / (np.max(image) - np.min(image)))
def main(args):
# Prepare and instantiate the model
model = torch.hub.load('mateuszbuda/brain-segmentation-pytorch', 'unet',
in_channels=3, out_channels=1, init_features=32,
pretrained=False)
model.load_state_dict(torch.load(args.weights))
model.cuda()
mat = scipy.io.loadmat(args.image)
if 'N' in mat:
input_mat = mat["N"]
if args.normalize:
input_mat = normalize_image(input_mat)
input_mat = np.uint8(input_mat)
timestr = time.strftime("%Y%m%d-%H%M%S")
for image_idx in range(input_mat.shape[2]):
input_image_original = input_mat[:,:,image_idx]
input_image = cvt1to3channels(input_image_original)
input_image = Image.fromarray(np.uint8(input_image))
trans = transforms.Compose([transforms.Resize((225,225)),transforms.CenterCrop(256), transforms.ToTensor()])
input_image = trans(input_image).unsqueeze(0)
with torch.no_grad():
if torch.cuda.is_available():
input_image = input_image.cuda()
prediction = model(input_image)
prediction_np = prediction.cpu().numpy()
prediction_img = prediction_np[0,0,:,:]
prediction_mask = (prediction_img > 0.5).astype(np.uint8)
input_image_np = input_image.cpu().numpy()
input_image_np = input_image_np[0,1,:,:]
input_image_np = (255*(input_image_np / np.max(input_image_np))).astype(np.uint8)
result_img = prediction_mask * input_image_np
if not os.path.exists(args.result):
os.makedirs(args.result)
output_filename = os.path.join(args.result, "res_"+str(image_idx)+"_"+timestr+".png")
skimage.io.imsave(output_filename + ".png", result_img)
print("Saving channel", image_idx)
print("Finished")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Training U-Net model for segmentation of brain MRI"
)
parser.add_argument(
"--weights", type=str, default="./paper_weights/skull-stripper-paper.pth", help="checkpoint with weights"
)
parser.add_argument(
"--image", type=str, default="./source_images/N_04_1.mat", help="image as .mat"
)
parser.add_argument(
"--result", type=str, default="./run_result", help="folder for output resulting images"
)
parser.add_argument(
'--normalize', dest='normalize', action='store_true', help="normalize input"
)
parser.set_defaults(normalize=False)
args = parser.parse_args()
main(args)