-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathfutils.py
212 lines (182 loc) · 7.9 KB
/
futils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import sys
import torch
import timeit
import argparse
import numpy as np
import time
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.autograd as autograd
from sklearn import preprocessing
from torch.autograd import Variable
from sklearn.decomposition import PCA
import matplotlib.gridspec as gridspec
import data_helpers
import scipy
import subprocess
from scipy import sparse
def weights_init(m):
if(torch.__version__=='0.4.0'):
torch.nn.init.xavier_uniform_(m)
else:
torch.nn.init.xavier_uniform(m)
def get_gpu_memory_map(boom, name=False):
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
])
gpu_memory = [int(x) for x in result.strip().split('\n')]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
if(name):
print("In " + str(name) + " Print: {0}; Mem(1): {1}; Mem(2): {2}; Mem(3): {3}; Mem(4): {4}".format( boom, gpu_memory_map[0], \
gpu_memory_map[1], gpu_memory_map[2], gpu_memory_map[3]))
else:
print("Print: {0}; Mem(1): {1}; Mem(2): {2}; Mem(3): {3}; Mem(4): {4}".format( boom, gpu_memory_map[0], \
gpu_memory_map[1], gpu_memory_map[2], gpu_memory_map[3]))
return boom+1
def count_parameters(model):
a = 0
for p in model.parameters():
if p.requires_grad:
a += p.numel()
return a
def effective_k(k, d):
return (k - 1) * d + 1
def load_model(model, name, optimizer=None):
if(torch.cuda.is_available()):
checkpoint = torch.load(name)
else:
checkpoint = torch.load(name, map_location=lambda storage, loc: storage)
model.load_state_dict(checkpoint['state_dict'])
if optimizer is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
init = checkpoint['epoch']
return model, optimizer, init
else:
return model
def save_model(model, optimizer, epoch, name):
checkpoint = {
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch
}
torch.save(checkpoint, "../saved_models/" + name)
def sample_z(mu, log_var, params, dtype_f):
eps = Variable(torch.randn(params.batch_size, params.Z_dim).type(dtype_f))
k = torch.exp(log_var / 2) * eps
return mu + k
def gen_model_file(params):
data_name = params.data_path.split('/')[-2]
fs_string = '-'.join([str(fs) for fs in params.filter_sizes])
file_name = 'data-%s_sl-%d_ed-%d_fs-%s_nf-%d_pu-%d_pt-%s_hd-%d_bs-%d_model-%s_pretrain-%s_beta-%s' % \
(data_name, params.sequence_length, params.embedding_dim,
fs_string, params.num_filters, params.pooling_units,
params.pooling_type, params.hidden_dims, params.batch_size,
params.model_variation, params.pretrain_type, params.beta)
return file_name
def sample_z(mu, log_var, params):
eps = Variable(torch.randn(log_var.shape[0], params.Z_dim).type(params.dtype))
k = torch.exp(log_var / 2) * eps
return mu + k
def load_data(X, Y, params, batch=True):
if(batch):
a = np.random.randint(0,params.N, size=params.mb_size)
if isinstance(X, scipy.sparse.csr.csr_matrix) or isinstance(X, scipy.sparse.csc.csc_matrix):
X, c = X[a].todense(), Y[a].todense()
else:
X, c = X[a], Y[a]
else:
if isinstance(X, scipy.sparse.csr.csr_matrix) or isinstance(X, scipy.sparse.csc.csc_matrix):
X, c = X.todense(), Y.todense()
else:
X, c = X, Y
X = Variable(torch.from_numpy(X.astype('float32')).type(params.dtype))
Y = Variable(torch.from_numpy(c.astype('float32')).type(params.dtype))
return X,Y
def write_grads(model, thefile):
grads = []
for key, value in model.named_parameters():
if(value.grad is not None):
grads.append(value.grad.mean().squeeze().cpu().numpy())
thefile = open('gradient_classifier.txt', 'a+')
for item in grads:
thefile.write("%s " % item)
thefile.write("\n" % item)
thefile.close()
def save_load_data(params, save=0):
params.pad_token = "<PAD/>"
params.go_token = '<GO/>'
params.end_token = '<END/>'
if(save):
print("Loading Data")
#####################################################
params.data_path += '.p'
x_tr, y_tr, x_te, y_te, vocabulary, vocabulary_inv, params = data_helpers.load_data(params, max_length=params.sequence_length, vocab_size=params.vocab_size)
x_tr = x_tr.astype(np.int32)
x_te = x_te.astype(np.int32)
y_tr = y_tr.astype(np.int32)
y_te = y_te.astype(np.int32)
#####################################################
params.data_path = params.data_path[:-2]
if not os.path.exists(params.data_path):
os.makedirs(params.data_path)
x_tr = sparse.csr_matrix(x_tr)
x_te = sparse.csr_matrix(x_te)
sparse.save_npz(params.data_path + '/x_train', x_tr)
sparse.save_npz(params.data_path + '/y_train', y_tr)
sparse.save_npz(params.data_path + '/y_test', y_te)
sparse.save_npz(params.data_path + '/x_test', x_te)
np.save(params.data_path + '/vocab', vocabulary)
np.save(params.data_path + '/vocab_inv', vocabulary_inv)
x_tr = sparse.load_npz(params.data_path + '/x_train.npz')
y_tr = sparse.load_npz(params.data_path + '/y_train.npz')
x_te = sparse.load_npz(params.data_path + '/x_test.npz')
y_te = sparse.load_npz(params.data_path + '/y_test.npz')
vocabulary = np.load(params.data_path + '/vocab.npy').item()
vocabulary_inv = np.load(params.data_path + '/vocab_inv.npy')
params.X_dim = x_tr.shape[1]
params.y_dim = y_tr.shape[1]
params.N = x_tr.shape[0]
params.vocab_size = len(vocabulary)
params.classes = y_tr.shape[1]
return x_tr, x_te, y_tr, y_te, vocabulary, vocabulary_inv, params
def load_batch_cnn(x_tr, y_tr, params, batch=True, batch_size=0, decoder_word_input=None, decoder_target=None, testing=0):
indexes = 0 # for scope
if(batch):
if(batch_size):
params.go_row = np.ones((batch_size,1))*params.vocabulary[params.go_token]
params.end_row = np.ones((batch_size,1))*params.vocabulary[params.end_token]
indexes = np.array(np.random.randint(x_tr.shape[0], size=batch_size))
x_tr, y_tr = x_tr[indexes,:], y_tr[indexes,:]
else:
params.go_row = np.ones((params.mb_size,1))*params.vocabulary[params.go_token]
params.end_row = np.ones((params.mb_size,1))*params.vocabulary[params.end_token]
indexes = np.array(np.random.randint(x_tr.shape[0], size=params.mb_size))
x_tr, y_tr = x_tr[indexes,:], y_tr[indexes,:]
else:
params.go_row = np.ones((x_tr.shape[0],1))*params.vocabulary[params.go_token]
params.end_row = np.ones((x_tr.shape[0],1))*params.vocabulary[params.end_token]
x_tr = x_tr.todense()
y_tr = y_tr.todense()
x_tr = Variable(torch.from_numpy(x_tr.astype('int')).type(params.dtype_i))
if(testing==0):
y_tr = Variable(torch.from_numpy(y_tr.astype('float')).type(params.dtype_f))
return x_tr, y_tr
def update_params(params):
if(len(params.model_name)==0):
params.model_name = gen_model_file(params)
params.decoder_kernels = [(400, params.Z_dim + params.hidden_dims + params.embedding_dim, 3),
(450, 400, 3),
(500, 450, 3)]
params.decoder_dilations = [1, 2, 4]
params.decoder_paddings = [effective_k(w, params.decoder_dilations[i]) - 1
for i, (_, _, w) in enumerate(params.decoder_kernels)]
return params
def sample_word_from_distribution(params, distribution):
ix = np.random.choice(range(params.vocab_size), p=distribution.view(-1))
x = np.zeros((params.vocab_size, 1))
x[ix] = 1
return params.vocabulary_inv[np.argmax(x)]