-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathingestion.py
66 lines (56 loc) · 2.4 KB
/
ingestion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import openai
import pinecone
import langchain
from langchain.chains.question_answering import load_qa_chain
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain import OpenAI, VectorDBQA
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma, Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.document_loaders import WebBaseLoader
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
index_name = 'demo-index'
# initialize connection (get API key at app.pinecone.io)
pinecone.init(
api_key="5e6a8cb6-f036-4a23-9b34-c95aec8e317f",
environment="us-west1-gcp-free" # find next to API key
)
# connect to index
if index_name not in pinecone.list_indexes():
# if does not exist, create index
pinecone.create_index(
index_name,
dimension=1536, # dimensionality of text-embedding-ada-002
metric='cosine',
)
index = pinecone.Index(index_name)
print(index.describe_index_stats())
def load_knowledge_base(str_: str):
#Load PDFS
loader = PyPDFLoader(str_)
documents = loader.load()
print(documents[:5])
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])
Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name)
llm = ChatOpenAI(temperature=0, openai_api_key=os.environ['OPENAI_API_KEY'], model_name="gpt-3.5-turbo")
chain = load_qa_chain(llm, chain_type="stuff")
query = "Summarize the document " + str_
docsearch = Pinecone.from_existing_index(index_name, embeddings)
docs = docsearch.similarity_search(query, include_metadata=True)
print(len(docs))
char_text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
d = char_text_splitter.split_documents(docs)
print(len(d))
response = chain.run(input_documents=d[:1], question=query)
print(response)
print("done")
uploaded_file = './data/L2 Detail - Positioning Time and Workforce Management solutions.pdf'
load_knowledge_base(uploaded_file)