-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent.py
158 lines (118 loc) · 4.84 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import random
import numpy as np
from collections import deque
from snakeGame import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_games = 0
self.epsilon = 0 #randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11,256,3)
self.trainer = QTrainer(self.model, lr = LR, gamma = self.gamma)
# TODO: model, trainer
def get_state(self, snakeGame):
head = snakeGame.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = snakeGame.direction == Direction.LEFT
dir_r = snakeGame.direction == Direction.RIGHT
dir_u = snakeGame.direction == Direction.UP
dir_d = snakeGame.direction == Direction.DOWN
state = [
# danger straight
(dir_r and snakeGame.is_collision(point_r)) or
(dir_l and snakeGame.is_collision(point_l)) or
(dir_u and snakeGame.is_collision(point_u)) or
(dir_d and snakeGame.is_collision(point_d)),
# danger right
(dir_u and snakeGame.is_collision(point_r)) or
(dir_d and snakeGame.is_collision(point_l)) or
(dir_l and snakeGame.is_collision(point_u)) or
(dir_r and snakeGame.is_collision(point_d)),
# danger left
(dir_d and snakeGame.is_collision(point_r)) or
(dir_u and snakeGame.is_collision(point_l)) or
(dir_r and snakeGame.is_collision(point_u)) or
(dir_l and snakeGame.is_collision(point_d)),
#move direction
dir_l,
dir_r,
dir_u,
dir_d,
#food location
snakeGame.food.x < snakeGame.head.x, #food left
snakeGame.food.x > snakeGame.head.x, #food left
snakeGame.food.y < snakeGame.head.y, #food left
snakeGame.food.y > snakeGame.head.y #food left
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) # popleft is MAX_MEMORY is reached
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE) # list of tuples
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(states, actions, rewards, next_states, dones)
#for state, action, reward, next_state, done in mini_sample:
#self.trainer.train_step(state, action, reward, next_state, done)
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(state, action, reward, next_state, done)
def get_action(self, state):
# Random moves: tradeoff between exploration/exploitation
self.epsilon = 80 - self.n_games
final_move = [0, 0, 0]
if random.randint(0, 200) < self.epsilon:
move = random.randint(0, 2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
plot_scores = []
plot_mean_score = []
total_score =0
record = 0
agent = Agent ()
snakeGame = SnakeGameAI()
while True:
#get old state
state_old = agent.get_state(snakeGame)
#get move
final_move = agent.get_action(state_old)
#perform move and get new state
reward, done, score = snakeGame.play_step(final_move)
state_new = agent.get_state(snakeGame)
#train short memory
agent.train_short_memory(state_old, final_move, reward, state_new, done)
# remember
agent.remember(state_old, final_move, reward, state_new, done)
if done:
#train the long memory//replay memory, plot result
snakeGame.reset()
agent.n_games += 1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.n_games, 'Score', score, 'Record:', record)
plot_scores.append(score)
total_score += score
mean_score = total_score/agent.n_games
plot_mean_score.append(mean_score)
plot(plot_scores, plot_mean_score)
if __name__ == '__main__':
train()