-
Notifications
You must be signed in to change notification settings - Fork 4
/
reallife.py
51 lines (39 loc) · 1.77 KB
/
reallife.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import cv2
import numpy as np
from tensorflow.keras.models import model_from_json
emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}
# load json and create model
json_file = open('model/emotion_model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
emotion_model = model_from_json(loaded_model_json)
# load weights into new model
emotion_model.load_weights("model/emotion_model.h5")
print("Loaded model from disk")
# start the webcam feed
#cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture(0)
while True:
# Find haar cascade to draw bounding box around face
ret, frame = cap.read()
frame = cv2.resize(frame, (1280, 720))
if not ret:
break
face_detector = cv2.CascadeClassifier('haarcascades/haarcascade_frontalface_default.xml')
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces available on camera
num_faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.3, minNeighbors=5)
# take each face available on the camera and Preprocess it
for (x, y, w, h) in num_faces:
cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (0, 255, 0), 4)
roi_gray_frame = gray_frame[y:y + h, x:x + w]
cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray_frame, (48, 48)), -1), 0)
# predict the emotions
emotion_prediction = emotion_model.predict(cropped_img)
maxindex = int(np.argmax(emotion_prediction))
cv2.putText(frame, emotion_dict[maxindex], (x+5, y-20), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
cv2.imshow('Emotion Detection', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()