-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11_MinimumPathSum.cpp
163 lines (150 loc) · 4.18 KB
/
11_MinimumPathSum.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
// https://leetcode.com/problems/minimum-path-sum/
// Given a m x n grid filled with non-negative numbers, find a path
// from top left to bottom right, which minimizes the sum of all numbers
// along its path.
// Note: You can only move either down or right at any point in time.
#include <bits/stdc++.h>
using namespace std;
class Solution4 {
// Tabulation : Space optimisation
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
vector<int> prev(n);
for (int i = 0; i < m; ++i)
{
vector<int> curr(n);
for (int j = 0; j < n; ++j)
{
if (i == 0 && j == 0)
{
curr[j] = grid[i][j];
}
else
{
int up = grid[i][j];
if (i > 0)
up += prev[j];
else
up += 1e9;
int left = grid[i][j];
if (j > 0)
left += curr[j-1];
else
left += 1e9;
curr[j] = min(left, up);
}
}
prev = curr;
}
return prev[n-1];
}
};
class Solution3
{
// Tabulation
public:
int minPathSum(vector<vector<int>> &grid)
{
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; ++i)
{
for (int j = 0; j < n; ++j)
{
if (i == 0 && j == 0)
{
dp[i][j] = grid[i][j];
}
else
{
int up = grid[i][j];
if (i > 0)
up += dp[i - 1][j];
else
up += 1e9;
int left = grid[i][j];
if (j > 0)
left += dp[i][j - 1];
else
left += 1e9;
dp[i][j] = min(left, up);
}
}
}
return dp[m - 1][n - 1];
}
};
class Solution2
{
// Recursive solution : Memoization
public:
int minPathSum(vector<vector<int>> &grid)
{
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m, vector<int>(n, -1));
return solve(grid, dp, m - 1, n - 1);
}
int solve(vector<vector<int>> &grid, vector<vector<int>> &dp, int m, int n)
{
if (m < 0 || n < 0)
return 1e9;
if (m == 0 && n == 0)
return grid[0][0];
if (dp[m][n] != -1)
return dp[m][n];
int l = solve(grid, dp, m, n - 1) + grid[m][n];
int u = solve(grid, dp, m - 1, n) + grid[m][n];
return dp[m][n] = min(l, u);
}
};
class Solution1
{
// Recursive solution : m, n as parameters
public:
int minPathSum(vector<vector<int>> &grid)
{
int m = grid.size(), n = grid[0].size();
return solve(grid, m - 1, n - 1);
}
int solve(vector<vector<int>> &grid, int m, int n)
{
if (m < 0 || n < 0)
return 1e9;
if (m == 0 && n == 0)
return grid[0][0];
int l = solve(grid, m, n - 1) + grid[m][n];
int u = solve(grid, m - 1, n) + grid[m][n];
return min(l, u);
}
};
class Solution
{
// Recursive solution
public:
int minPathSum(vector<vector<int>> &grid)
{
return solve(grid);
}
int solve(vector<vector<int>> &grid, int i = 0, int j = 0)
{
if (i >= grid.size() || j >= grid[0].size())
return INT_MAX;
if (i == grid.size() - 1 && j == grid[0].size() - 1)
return grid[i][j];
cout << i << " " << j << endl;
int r = solve(grid, i, j + 1) + grid[i][j];
int d = solve(grid, i + 1, j) + grid[i][j];
cout << r << " " << d << endl;
return min(r, d);
}
};
int main()
{
vector<vector<int>> grid = {{1, 3, 1}, {1, 5, 1}, {4, 2, 1}};
Solution4 Obj1;
cout << Obj1.minPathSum(grid);
ios_base::sync_with_stdio(false);
cin.tie(NULL);
return 0;
}