-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
39 lines (32 loc) · 1.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from models import simple_cnn_model
seed = 7
np.random.seed(seed)
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
shape = (X_train.shape[1], X_train.shape[2], 1)
# flatten images to vector
X_train = X_train.reshape(X_train.shape[0], *shape).astype("float32")
X_test = X_test.reshape(X_test.shape[0], *shape).astype("float32")
# normalize inputs
X_train = X_train/255
X_test = X_test/255
# one hot encoding
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_train.shape[1]
model = simple_cnn_model(shape, num_classes)
model.fit(X_train, y_train,
validation_data=(X_test, y_test),
epochs=10,
batch_size=200,
verbose=2)
scores = model.evaluate(X_test, y_test, verbose=0)
print("Error: %.2f%%" % (100-scores[1]*100))
# save it
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
model.save_weights("model.h5")