-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtpp_model_policy_gradient.py
234 lines (155 loc) · 8.36 KB
/
tpp_model_policy_gradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import torch
from torch import nn
from torch.optim import Adam
from torch.autograd import Variable
from ppgen import *
import matplotlib.pyplot as plt
import random
###########################################################################
# load data
T_max = 20
num_seq = 1000
intensity = IntensityHawkesPlusPoly(mu=1, alpha=0, beta=1,
segs=[0, T_max/4., T_max*2./4., T_max*3./4., T_max],
b=0, A=[1, -1, 1, -1])
expert_time = generate_sample(intensity, T=T_max, n=num_seq)
expert_len = []
for s in expert_time:
expert_len.append(len(s))
max_expert_len = max(expert_len)
seq_len = max_expert_len + 10
ee = T_max * np.ones((num_seq, seq_len))
for i in range(num_seq):
ee[i, 0:expert_len[i]] = np.array(expert_time[i]) # pad sequence with T_max
print(np.shape(ee))
###########################################################################
# generator
# LSTM type of architecture to generate time
class PointProcessGenerator(nn.Module):
def __init__(self, kernel_bandwidth=1, input_size=1, hidden_size=5, seq_len=10, batch_size=2, T_max=5):
super(PointProcessGenerator, self).__init__()
self.input_size = input_size
self.kernel_bandwidth = kernel_bandwidth
self.hidden_size = hidden_size
self.seq_len = seq_len
self.batch_size = batch_size
self.T_max = T_max
# Define parameters to learn
# Define the LSTM layer
self.lstm_cell = nn.LSTMCell(self.input_size, self.hidden_size, bias=True)
# Define feedforward layer
self.V = nn.Linear(self.hidden_size, 1, bias=True)
# Define nonlinear activation functions
self.elu = nn.ELU()
###########################################################################
def generate_time(self, rand_uniform_pool):
# rand_uniform_pool: batch_size * seq_len
# initialize hidden_state
hx = torch.zeros(self.batch_size, self.hidden_size).float()
cx = torch.zeros(self.batch_size, self.hidden_size).float()
# initialize output
cum_output = torch.zeros(self.batch_size, 1).float()
output_array = []
cum_output_array = []
sigma_array = []
for i in range(self.seq_len):
# sigma = self.elu(self.V(hidden_state_1)) + 1
sigma = self.elu(self.V(hx)) + 1 # apply a nonlinear function from hidden_state to sigma
sigma_array.append(sigma)
# sequentially generate time-interval
output = (- torch.log(torch.reshape(torch.Tensor(rand_uniform_pool[:, i]), (self.batch_size,1)))) / sigma # batch_size * 1
output_array.append(output)
cum_output = cum_output + output
cum_output_array.append(cum_output)
# apply LSTM cell for each step
hx, cx = self.lstm_cell(cum_output, (hx, cx))
# detach the gradients for the generated samples
learner_time_list = [learner_time_batch.detach().numpy() for learner_time_batch in
cum_output_array] # detach gradient
learner_time_mat = np.concatenate(learner_time_list, axis=1) # ( batch_size, seq_len )
learner_time_interval_list = [learner_time_interval_batch.detach() for learner_time_interval_batch in
output_array] # detach gradient
learner_time_interval = torch.cat(learner_time_interval_list, dim=1)
sigma = torch.cat(sigma_array, dim=1)
return learner_time_mat, learner_time_interval, sigma
###########################################################################
def reward_kernel_matrix(self, expert_time, learner_time):
# Note: for policy gradient, when we compute the reward, we detach the gradient
# So we first change learner_time form a list of tensors to numpy array
# input: learner_time: list( tensor )
learner_time_flattern = np.reshape(learner_time, newshape=[1, self.batch_size*self.seq_len])
expert_time_flattern = np.reshape(expert_time, newshape=[1, self.batch_size*self.seq_len])
learner_learner_mat = np.exp(- np.square(learner_time_flattern - np.transpose(learner_time_flattern)) / self.kernel_bandwidth)
learner_expert_mat = np.exp(- np.square(learner_time_flattern - np.transpose(expert_time_flattern))/self.kernel_bandwidth)
learner_time_mask = np.multiply(learner_time_flattern < self.T_max, learner_time_flattern > 0).astype(float) # [1, batch_size * seq_len]
expert_time_mask = np.multiply(expert_time_flattern < self.T_max, expert_time_flattern > 0).astype(float) # [1, batch_size * seq_len]
learner_learner_mat_mask = np.matmul(learner_time_mask, learner_learner_mat)
learner_expert_mat_mask = np.matmul(np.multiply(learner_time_mask, expert_time_mask), learner_expert_mat)
reward_array = np.sum(learner_expert_mat_mask, axis=0) - np.sum(learner_learner_mat_mask, axis=0)
return reward_array, learner_time_mask.squeeze()
###########################################################################
def compute_policy_gradient(self, reward_array, learner_time_mask, learner_time_interval, sigma):
# policy gradient
# sigma is a list of tensors
# only sigma contains unknown parameters
# use sigma to compute the log-likelihood
# detach the gradient for learner_time_interval
loglik_interval = torch.log(sigma) - sigma * learner_time_interval # with gradient
# compute reward to go
reward_with_mask = np.reshape(reward_array * learner_time_mask, [self.batch_size, self.seq_len])
reward_to_go_inverse = np.cumsum(reward_with_mask, axis=1)
reward_total = np.reshape(np.sum(reward_with_mask, axis=1), [batch_size,1])
a = np.tile(reward_total, reps=self.seq_len) - reward_to_go_inverse
reward_to_go = np.concatenate((reward_total, a[:, 1:]), axis=1)
reward_to_go = torch.tensor(reward_to_go).float()
# compute loss
loss = - torch.sum(loglik_interval * reward_to_go)
return loss
###########################################################################
kernel_bandwidth = 1
hidden_size = 64
batch_size = 20
input_size = 1
iter = 4000
num_batches = int(num_seq / batch_size)
PointProcessGenerator = PointProcessGenerator(kernel_bandwidth, input_size, hidden_size, seq_len, batch_size, T_max)
optimizer = Adam(PointProcessGenerator.parameters(), betas=(0.6, 0.6), lr=0.001, weight_decay=0.1)
# training
expert_time = ee
fig = plt.figure()
ax = fig.add_subplot(111)
plt.ion()
for i in range(iter):
for b in range(num_batches):
cur_rand_uniform_pool = np.random.rand(batch_size, seq_len).astype(np.float32)
learner_time, learner_time_interval, sigma = PointProcessGenerator.generate_time(
cur_rand_uniform_pool)
batch_idx = np.arange(batch_size * b, batch_size * (b + 1))
expert_time_batch = expert_time[batch_idx]
reward_array, learner_time_mask = PointProcessGenerator.reward_kernel_matrix(expert_time_batch, learner_time)
PointProcessGenerator.zero_grad()
loss = PointProcessGenerator.compute_policy_gradient(reward_array, learner_time_mask, learner_time_interval, sigma)
loss.backward() # computes gradient
optimizer.step() # update the parameters using the gradients
# visualize results
ax.clear()
test_point_flat = learner_time.flatten()
test_intensity_cum = []
for grid in np.arange(0, T_max, 0.5):
idx = (test_point_flat < grid)
event_count_cum = len(test_point_flat[idx])
test_intensity_cum = np.append(test_intensity_cum, event_count_cum)
test_intensity = np.append(test_intensity_cum[0], np.diff(test_intensity_cum)) / batch_size
plt.plot(np.arange(0, T_max, 0.5), test_intensity)
train_point_flat = expert_time_batch.flatten()
train_intensity_cum = []
for grid in np.arange(0, T_max, 0.5):
idx = (train_point_flat < grid)
event_count_cum = len(train_point_flat[idx])
train_intensity_cum = np.append(train_intensity_cum, event_count_cum)
train_intensity = np.append(train_intensity_cum[0],
np.diff(train_intensity_cum)) / batch_size
plt.plot(np.arange(0, T_max, 0.5), train_intensity)
plt.pause(0.02)
print('loss', loss)