forked from yeyupiaoling/Whisper-Finetune
-
Notifications
You must be signed in to change notification settings - Fork 10
/
infer_gui.py
212 lines (196 loc) · 9.35 KB
/
infer_gui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import _thread
import argparse
import functools
import os
import time
import tkinter.messagebox
from tkinter import *
from tkinter.filedialog import askopenfilename
import numpy as np
import soundcard
import soundfile
from faster_whisper import WhisperModel
from zhconv import convert
from utils.utils import print_arguments, add_arguments
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg("model_path", type=str, default="models/whisper-tiny-finetune-ct2", help="转换后的模型路径,转换方式看文档")
add_arg("language", type=str, default="zh", help="设置语言,必须简写,如果为None则自动检测语言")
add_arg("use_gpu", type=bool, default=True, help="是否使用gpu进行预测")
add_arg("use_int8", type=bool, default=False, help="是否使用int8进行预测")
add_arg("beam_size", type=int, default=10, help="解码搜索大小")
add_arg("vad_filter", type=bool, default=True, help="是否使用VAD过滤掉部分没有讲话的音频")
add_arg("local_files_only", type=bool, default=True, help="是否只在本地加载模型,不尝试下载")
args = parser.parse_args()
print_arguments(args)
class SpeechRecognitionApp:
def __init__(self, window: Tk, args):
self.window = window
self.wav_path = None
self.predicting = False
self.playing = False
self.recording = False
# 录音参数
self.frames = []
self.sample_rate = 16000
self.interval_time = 0.5
self.block_size = int(self.sample_rate * self.interval_time)
# 最大录音时长
self.max_record = 600
# 录音保存的路径
self.output_path = 'dataset/record'
# 指定窗口标题
self.window.title("夜雨飘零语音识别")
# 固定窗口大小
self.window.geometry('870x500')
self.window.resizable(False, False)
# 识别短语音按钮
self.short_button = Button(self.window, text="选择文件", width=20, command=self.predict_audio_thread)
self.short_button.place(x=10, y=10)
# 录音按钮
self.record_button = Button(self.window, text="录音识别", width=20, command=self.record_audio_thread)
self.record_button.place(x=170, y=10)
# 播放音频按钮
self.play_button = Button(self.window, text="播放音频", width=20, command=self.play_audio_thread)
self.play_button.place(x=330, y=10)
# 输出结果文本框
self.result_label = Label(self.window, text="输出日志:")
self.result_label.place(x=10, y=70)
self.result_text = Text(self.window, width=120, height=30)
self.result_text.place(x=10, y=100)
# 转阿拉伯数字控件
self.check_frame = Frame(self.window)
self.joint_text_check_var = BooleanVar()
self.joint_text_check = Checkbutton(self.check_frame, text='拼接文本', variable=self.joint_text_check_var)
self.joint_text_check.grid(column=0, row=0)
self.to_simple_check_var = BooleanVar()
self.to_simple_check = Checkbutton(self.check_frame, text='繁体转简体', variable=self.to_simple_check_var)
self.to_simple_check.grid(column=1, row=0)
self.to_simple_check.select()
self.task_check_var = BooleanVar()
self.task_check = Checkbutton(self.check_frame, text='音频转录', variable=self.task_check_var)
self.task_check.grid(column=2, row=0)
self.task_check.select()
self.check_frame.grid(row=1)
self.check_frame.place(x=600, y=10)
# 检查模型文件是否存在
assert os.path.exists(args.model_path), f"模型文件{args.model_path}不存在"
# 加载模型
if args.use_gpu:
if not args.use_int8:
self.model = WhisperModel(args.model_path, device="cuda", compute_type="float16",
local_files_only=args.local_files_only)
else:
self.model = WhisperModel(args.model_path, device="cuda", compute_type="int8_float16",
local_files_only=args.local_files_only)
else:
self.model = WhisperModel(args.model_path, device="cpu", compute_type="int8",
local_files_only=args.local_files_only)
# 预热
_, _ = self.model.transcribe("dataset/test.wav", beam_size=5)
# 预测短语音线程
def predict_audio_thread(self):
if not self.predicting:
self.wav_path = askopenfilename(filetypes=[("音频文件", "*.wav"), ("音频文件", "*.mp3")],
initialdir='./dataset')
if self.wav_path == '': return
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, "已选择音频文件:%s\n" % self.wav_path)
self.result_text.insert(END, "正在识别中...\n")
_thread.start_new_thread(self.predict_audio, (self.wav_path,))
else:
tkinter.messagebox.showwarning('警告', '正在预测,请等待上一轮预测结束!')
# 预测短语音
def predict_audio(self, wav_path):
self.predicting = True
self.result_text.delete('1.0', 'end')
try:
task = "transcribe" if self.task_check_var.get() else "translate"
segments, info = self.model.transcribe(wav_path, beam_size=args.beam_size, language=args.language,
vad_filter=args.vad_filter, task=task)
result_text = ''
for segment in segments:
text = segment.text
# 繁体转简体
if self.to_simple_check_var.get():
text = convert(text, 'zh-cn')
# 判断是否要分段输出
if self.joint_text_check_var.get():
result_text += text
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, f"{result_text}\n")
else:
self.result_text.insert(END, f"[{round(segment.start, 2)} - {round(segment.end, 2)}]:{text}\n")
except Exception as e:
print(e)
self.predicting = False
# 录音识别线程
def record_audio_thread(self):
if not self.playing and not self.recording:
self.result_text.delete('1.0', 'end')
self.recording = True
_thread.start_new_thread(self.record_audio, ())
else:
if self.playing:
tkinter.messagebox.showwarning('警告', '正在播放音频,无法录音!')
else:
# 停止播放
self.recording = False
# 播放音频线程
def play_audio_thread(self):
if self.wav_path is None or self.wav_path == '':
tkinter.messagebox.showwarning('警告', '音频路径为空!')
else:
if not self.playing and not self.recording:
_thread.start_new_thread(self.play_audio, ())
else:
if self.recording:
tkinter.messagebox.showwarning('警告', '正在录音,无法播放音频!')
else:
# 停止播放
self.playing = False
def record_audio(self):
self.frames = []
self.record_button.configure(text='停止录音')
self.result_text.insert(END, "正在录音...\n")
# 打开默认的输入设备
input_device = soundcard.default_microphone()
recorder = input_device.recorder(samplerate=self.sample_rate, channels=1, blocksize=self.block_size)
with recorder:
while True:
if len(self.frames) * self.interval_time > self.max_record: break
# 开始录制并获取数据
data = recorder.record(numframes=self.block_size)
data = data.squeeze()
self.frames.append(data)
self.result_text.delete('1.0', 'end')
self.result_text.insert(END, f"已经录音{len(self.frames) * self.interval_time}秒\n")
if not self.recording: break
# 拼接录音数据
data = np.concatenate(self.frames)
# 保存音频数据
os.makedirs(self.output_path, exist_ok=True)
self.wav_path = os.path.join(self.output_path, '%s.wav' % str(int(time.time())))
soundfile.write(self.wav_path, data=data, samplerate=self.sample_rate)
self.recording = False
self.record_button.configure(text='录音识别')
self.result_text.delete('1.0', 'end')
_thread.start_new_thread(self.predict_audio, (self.wav_path,))
# 播放音频
def play_audio(self):
self.play_button.configure(text='停止播放')
self.playing = True
default_speaker = soundcard.default_speaker()
data, sr = soundfile.read(self.wav_path)
with default_speaker.player(samplerate=sr) as player:
for i in range(0, data.shape[0], sr):
if not self.playing: break
d = data[i:i + sr]
player.play(d / np.max(np.abs(d)))
self.playing = False
self.play_button.configure(text='播放音频')
tk = Tk()
myapp = SpeechRecognitionApp(tk, args)
if __name__ == '__main__':
tk.mainloop()