-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathloaders.py
137 lines (117 loc) · 6.05 KB
/
loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import mxnet as mx
import numpy as np
import numpy.matlib
import numpy.random
import os
import json, pickle
import random
import logging
import lmdb
import time
class SimpleBatch(object):
def __init__(self, data_names, data, label_names, label,
bucket_key=None, qid=None, ans_all=None, splits=None):
self.data = data
self.label = label
self.data_names = data_names
self.label_names = label_names
self.bucket_key = bucket_key
self.pad = 0
self.splits=splits # a list of splits
self.index = None
self.qid = qid # should be a list of qid's
self.ans_all = ans_all
self.provide_data = [(n, x.shape) for n,x in zip(self.data_names, self.data)]
self.provide_label = [(n, x.shape) for n,x in zip(self.label_names, self.label)]
class VQAIter(mx.io.DataIter):
def __init__(self, qa_path, lmdb_path, batch_size,
max_seq_len=26, sent_gru_hsize=2400,
is_train=True, net=None, w=14, h=14, seed=1234):
"""
Data loader for the VQA dataset.abs
qa_path: path to the question-answer file
lmdb_path: the LMDB storing the extracted features
net: symbol of the network, to print its size
is_train: use answer sampling if set to True
"""
super(VQAIter, self).__init__()
random.seed(seed)
qa_paths = qa_path.split(',')
logging.info("QA data paths:{}".format(qa_paths))
env = lmdb.open(lmdb_path, readonly=True)
self.txn = env.begin()
self.batch_size = batch_size
self.is_train=is_train
# whether to use snake-shaped image data
self.provide_data = [('img_feature', (batch_size, w*h, 2048)),
('sent_seq', (batch_size, max_seq_len)),
('mask', (batch_size, max_seq_len)),
('sent_l0_init_h', (batch_size, sent_gru_hsize)),
('horizontal_zeros', (batch_size, 1,1,w)),
('vertical_zeros', (batch_size, 1,h,1))]
self.provide_label = [('ans_label', (batch_size,))]
self.data_names = [t[0] for t in self.provide_data]
self.label_names = [t[0] for t in self.provide_label]
self.data_buffer = [np.zeros(t[1], dtype=np.float32) for t in self.provide_data]
self.label_buffer = [np.zeros(t[1], dtype=np.float32) for t in self.provide_label]
self.qa_list = []
for path in qa_paths:
self.qa_list += pickle.load(open(path))
# print self.provide_data
if net is not None:
shape_list = net.infer_shape(**dict(self.provide_data+self.provide_label))
arg_names = net.list_arguments()
n_params = 0
logging.info("Number of parameters:")
for n, shape in enumerate(shape_list[0]):
if arg_names[n] not in self.data_names and arg_names[n] not in self.label_names:
logging.info("%s: %d, i.e., %.2f M params", arg_names[n], np.prod(shape), np.prod(shape)/1e6)
n_params += np.prod(shape)
logging.info("Total number of parameters:%d, i.e., %.2f M params", n_params, n_params/1e6)
self.last_batch_size=None # signaling the changed batch size
self.n_total = len(self.qa_list)
self.reset()
def reset(self):
if self.is_train:
logging.info("Shuffling data...")
random.shuffle(self.qa_list)
def __iter__(self):
candidate_ans = np.zeros((self.batch_size, 10), dtype=np.int32)
for curr_idx in range(0, self.n_total-self.batch_size+1, self.batch_size):
qid_list=[]
for bidx in range(self.batch_size):
bdata = self.qa_list[bidx+curr_idx]
self.data_buffer[0][bidx,:,:] = pickle.loads(self.txn.get(bdata['img_path'])).toarray()
self.data_buffer[1][bidx, :] = bdata['ques']
self.data_buffer[2][bidx, :] = bdata['qmask']
qid_list.append(bdata['qid'])
if self.is_train:
self.label_buffer[0][bidx] = np.random.choice(bdata['ans_cans'], p=bdata['ans_p'])
#if not self.is_train and len(bdata['ans_all'])>0:
# for VQA validation only
#candidate_ans[bidx] = bdata['ans_all']
yield SimpleBatch(self.data_names, [mx.nd.array(arr) for arr in self.data_buffer],
self.label_names, [mx.nd.array(arr) for arr in self.label_buffer],
qid=qid_list)#, ans_all=candidate_ans)
# check if need to add an incomplete batch at validation
if not self.is_train and curr_idx < self.n_total-self.batch_size:
curr_idx += self.batch_size
self.last_batch_size = self.n_total - curr_idx
print("last_batch_size {}".format(self.last_batch_size))
candidate_ans = np.zeros((self.last_batch_size, 10), dtype=np.int32)
# change the shape of buffer files
data_buffer=[np.zeros([self.last_batch_size]+list(shape[1:])) for name, shape in self.provide_data]
label_buffer=[np.zeros([self.last_batch_size]+list(shape[1:])) for name, shape in self.provide_label]
qid_list=[]
for bidx in range(self.last_batch_size):
bdata = self.qa_list[bidx+curr_idx]
data_buffer[0][bidx,:,:] = pickle.loads(self.txn.get(bdata['img_path'])).toarray()
data_buffer[1][bidx, :] = bdata['ques']
data_buffer[2][bidx, :] = bdata['qmask']
qid_list.append(bdata['qid'])
#if len(bdata['ans_all'])>0:
#label_buffer[0][bidx] = np.random.choice(bdata['ans_cans'], p=bdata['ans_p'])
#candidate_ans[bidx] = bdata['ans_all']
yield SimpleBatch(self.data_names, [mx.nd.array(arr) for arr in data_buffer],
self.label_names, [mx.nd.array(arr) for arr in label_buffer],
qid=qid_list)#, ans_all=candidate_ans)