forked from abidabrar-bracu/discord-bot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarks.py
197 lines (175 loc) · 8 KB
/
marks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from pygsheets_wrapper import get_sheet
import discord
import literals
import vars
import pandas as pd
from utils_wrapper import get_channel
# TODO: index by 'Self Column'
def get_sec_marks(info, sec):
print(f"Fetching marks from section {sec} marks sheet...", end=" ")
meta_sheet = get_sheet(info["marks"][str(sec)], "Meta")
# forced refresh
blank_cell = meta_sheet.get_named_range("BLANK")
for _ in range(10):
blank_cell.clear()
sec_sheet = get_sheet(
info["marks"][str(sec)], literals.sec_marks_sheet_name_format.format(sec)
)
# TODO: might have issues with not reaching the last column with columns with empty header
sec_marks = sec_sheet.get_as_df(start="B1", has_header=False)
print(f"extracting marks...", end=" ")
... # rename index
sec_marks.columns = sec_marks.loc[2].copy()
for row_name, row_no in literals.info_row_dict.items():
sec_marks.loc[row_no - 1, "Student ID"] = row_name
sec_marks.set_index("Student ID", inplace=True)
sec_headers = sec_marks.loc[literals.info_row_dict.keys()]
# get maximum entry count from sheet
row_marks_count = int(
meta_sheet.get_named_range("ROW_DATA_COUNT").cells[0][0].value
)
# sec_bonus_marks = sec_marks[-2*row_marks_count-1:-row_marks_count-1]
# sec_bonus_marks = sec_bonus_marks[sec_bonus_marks.index != '']
sec_marks = sec_marks[-row_marks_count:]
sec_marks = sec_marks[sec_marks.index != ""]
# map students to where their marks are stored (useful for students attending other sections)
try:
vars.df_marks_section.loc[sec_marks.index, "Marks Section"] = sec
print("Done.")
except:
print("Couldn't find some student ID's in Enrolment sheet.")
sec_marks = pd.concat([sec_headers, sec_marks]).transpose()
sec_marks["Publish?"] = sec_marks["Publish?"] == "Publish?\n✔︎"
return sec_marks
async def update_sec_marks(info, sec, ctx=None):
sec_marks = get_sec_marks(info, sec)
vars.dict_df_marks[sec] = sec_marks
published_sec_marks = sec_marks["Total Marks"][
sec_marks["Publish?"]
& (
pd.to_numeric(sec_marks["Depth"])
<= literals.max_depth_assessment_for_autocomplete
)
]
published_numeric_sec_marks = pd.to_numeric(published_sec_marks, errors="coerce")
published_numeric_sec_marks = published_numeric_sec_marks[
published_numeric_sec_marks.notna()
]
# create options
vars.dict_sec_marks_assessments[sec] = []
for assessment in published_numeric_sec_marks.index:
assessment_col = sec_marks.at[assessment, "Self Column"]
parent_col = sec_marks.at[assessment, "Parent Column"]
parent = sec_marks[sec_marks["Self Column"] == parent_col].index
if parent.empty:
option_str = assessment
else:
option_str = assessment + "\u2000" * 5 + " ← " + parent[0]
vars.dict_sec_marks_assessments[sec].append(
discord.OptionChoice(name=option_str, value=assessment_col)
)
# vars.dict_sec_marks_assessments[sec] = published_numeric_sec_marks.index.to_list(
# )
# HACK: send message to keep bot alive
msg = f"Updated section {sec} marks."
if ctx:
await ctx.followup.send(msg, ephemeral=True)
else:
await get_channel("bot-config").send(msg, delete_after=3.0)
def get_df_marks_by_student_id(student_id):
try:
marks_section = vars.df_marks_section.xs(student_id, level="Student ID")[
"Marks Section"
]
marks_section = marks_section.values[0] # int value
marks_df = vars.dict_df_marks[marks_section][
list(literals.info_row_dict) + [student_id]
]
return marks_df
except:
return None
def get_df_marks_by_discord_id(discord_id):
try:
student_id = vars.df_marks_section.xs(discord_id, level="Discord ID").index[0]
return get_df_marks_by_student_id(student_id)
except:
return None
# def get_df_marks_by_student_id_old(student_id):
# try:
# # marks_section = vars.df_student.loc[student_id]['Marks Section']
# marks_section = vars.df_marks_section.xs(
# student_id, level='Student ID')['Marks Section']
# marks_section = marks_section.values[0] # int value
# marks_df = vars.dict_df_marks[marks_section].xs(
# student_id, level='Student ID')
# return marks_df
# except:
# return None
# def get_df_marks_by_discord_id_old(discord_id):
# try:
# # marks_section = vars.df_student.loc[student_id]['Marks Section']
# marks_section = vars.df_marks_section.xs(
# discord_id, level='Discord ID')['Marks Section']
# marks_section = marks_section.values[0] # int value
# marks_df = vars.dict_df_marks[marks_section].xs(
# discord_id, level='Discord ID')
# return marks_df
# except:
# return None
# async def get_sec_marks_old(info, sec):
# print(f"Fetching marks from section {sec} marks sheet...", end=' ')
# meta_sheet = get_sheet(info['marks'][str(sec)], 'Meta')
# # forced refresh
# blank_cell = meta_sheet.get_named_range('BLANK')
# for _ in range(10):
# blank_cell.clear()
# sec_sheet = get_sheet(info['marks'][str(sec)],
# literals.sec_marks_sheet_name_format.format(sec))
# # TODO: might have issues with not reaching the last column with columns with empty header
# sec_marks = sec_sheet.get_as_df(start='B1', has_header=False)
# print(f"extracting marks...", end=' ')
# # # subbed header row
# # sec_marks.rename(index={2: 'Subbed Header'}, inplace=True)
# sec_marks.columns = sec_marks.loc[2].copy()
# literals.row_dict = {'Header': 2, 'Helper Text': 3, 'Parent Column': 8, 'Self Column': 13,
# 'Total Marks': 4, 'Publish?': 0, 'Actual Marks?': 21}
# for row_name, row_no in literals.row_dict.items():
# sec_marks['Student ID'].loc[row_no] = row_name
# sec_marks.set_index('Student ID', inplace=True)
# sec_headers = sec_marks.loc[literals.row_dict.keys()]
# sec_marks.columns = pd.MultiIndex.from_arrays(
# sec_headers.values.tolist(), names=literals.row_dict.keys())
# # get maximum entry count from sheet
# row_marks_count = int(meta_sheet.get_named_range(
# 'ROW_DATA_COUNT').cells[0][0].value)
# # sec_bonus_marks = sec_marks[-2*row_marks_count-1:-row_marks_count-1]
# # sec_bonus_marks = sec_bonus_marks[sec_bonus_marks.index != '']
# sec_marks = sec_marks[-row_marks_count:]
# sec_marks = sec_marks[sec_marks.index != '']
# # map students to where their marks are stored (useful for students attending other sections)
# try:
# vars.df_marks_section.loc[sec_marks.index, 'Marks Section'] = sec
# sec_marks.insert(
# 0, 'Discord ID', vars.df_student['Discord ID'].loc[sec_marks.index])
# sec_marks.set_index([sec_marks.index, 'Discord ID'], inplace=True)
# print("Done.")
# except:
# print("Couldn't find some student ID's in Enrolment sheet.")
# # send messages to avoid bot dying
# await get_channel("bot-config").send(f"Updated section {sec} marks.", delete_after=3.0)
# return sec_marks
# # use with try except block
# # filter published columns
# # sec_marks.xs("Publish?\n✔︎", level='Publish?', axis=1)
# # filter columns with actual marks (not maximum)
# # sec_marks.xs(1, level='Actual Marks?', axis=1)
# async def update_sec_marks_old(info, sec):
# sec_marks = get_sec_marks(info, sec)
# vars.dict_df_marks[sec] = sec_marks
# published_sec_marks = sec_marks['Total Marks'][sec_marks['Publish?']]
# published_numeric_sec_marks = pd.to_numeric(
# published_sec_marks, errors='coerce').notna()
# published_numeric_sec_marks = published_numeric_sec_marks[published_numeric_sec_marks]
# vars.dict_sec_marks_assessments[sec] = published_numeric_sec_marks.index.to_list(
# )
# await get_channel("bot-config").send(f"Updated section {sec} marks.", delete_after=3.0)