@@ -17,6 +17,52 @@ while still keeping the overall weight under or equal to 15 kg?
17
17
18
18
![ knapsack problem] ( https://upload.wikimedia.org/wikipedia/commons/f/fd/Knapsack.svg )
19
19
20
+ ## Definition
21
+
22
+ ### 0/1 knapsack problem
23
+
24
+ The most common problem being solved is the ** 0/1 knapsack problem** ,
25
+ which restricts the number ` xi ` of copies of each kind of item to zero or one.
26
+
27
+ Given a set of n items numbered from ` 1 ` up to ` n ` , each with a
28
+ weight ` wi ` and a value ` vi ` , along with a maximum weight
29
+ capacity ` W ` ,
30
+
31
+ maximize ![ 0/1 knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/85620037d368d2136fb3361702df6a489416931b )
32
+
33
+ subject to ![ 0/1 knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6e7c9bca4397980976ea6d19237500ce3b8176 )
34
+ and ![ 0/1 knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/07dda71da2a630762c7b21b51ea54f86f422f951 )
35
+
36
+ Here ` xi ` represents the number of instances of item ` i ` to
37
+ include in the knapsack. Informally, the problem is to maximize
38
+ the sum of the values of the items in the knapsack so that the
39
+ sum of the weights is less than or equal to the knapsack's
40
+ capacity.
41
+
42
+ ### Bounded knapsack problem (BKP)
43
+
44
+ The ** bounded knapsack problem (BKP)** removes the restriction
45
+ that there is only one of each item, but restricts the number
46
+ ` xi ` of copies of each kind of item to a maximum non-negative
47
+ integer value ` c ` :
48
+
49
+ maximize ![ bounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/85620037d368d2136fb3361702df6a489416931b )
50
+
51
+ subject to ![ bounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6e7c9bca4397980976ea6d19237500ce3b8176 )
52
+ and ![ bounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/6c8c5ac4f8247b3b8e01e89de76a1df0ea969821 )
53
+
54
+ ### Unbounded knapsack problem (UKP)
55
+
56
+ The ** unbounded knapsack problem (UKP)** places no upper bound
57
+ on the number of copies of each kind of item and can be
58
+ formulated as above except for that the only restriction
59
+ on ` xi ` is that it is a non-negative integer.
60
+
61
+ maximize ![ unbounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/85620037d368d2136fb3361702df6a489416931b )
62
+
63
+ subject to ![ unbounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6e7c9bca4397980976ea6d19237500ce3b8176 )
64
+ and ![ unbounded knapsack] ( https://wikimedia.org/api/rest_v1/media/math/render/svg/90a99710f61d5dea19e49ae5b31164d2b56b07e3 )
65
+
20
66
## References
21
67
22
68
- [ Wikipedia] ( https://en.wikipedia.org/wiki/Knapsack_problem )
0 commit comments