You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, it is a nice work. I followed the install.md to build the virtual env with scapy==3.0.0. But when I run the example with python main.py --image_src "examples/3.jpg" --out_image_name "output/3_result.jpg", there is a OSError as follow:
------This is time-consuming, please wait...------
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :109 in load_state_dict │
│ │
│ 106 │ │ if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant): │
│ 107 │ │ │ return torch.load(checkpoint_file, map_location="cpu") │
│ 108 │ │ else: │
│ ❱ 109 │ │ │ return safetensors.torch.load_file(checkpoint_file, device="cpu") │
│ 110 │ except Exception as e: │
│ 111 │ │ try: │
│ 112 │ │ │ with open(checkpoint_file) as f: │
│ │
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/safetensors/torch.py:261 in │
│ load_file │
│ │
│ 258 │ result = {} │
│ 259 │ with safe_open(filename, framework="pt", device=device) as f: │
│ 260 │ │ for k in f.keys(): │
│ ❱ 261 │ │ │ result[k] = f.get_tensor(k) │
│ 262 │ return result │
│ 263 │
│ 264 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
AttributeError: module 'torch' has no attribute 'frombuffer'
During handling of the above exception, another exception occurred:
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :113 in load_state_dict │
│ │
│ 110 │ except Exception as e: │
│ 111 │ │ try: │
│ 112 │ │ │ with open(checkpoint_file) as f: │
│ ❱ 113 │ │ │ │ if f.read().startswith("version"): │
│ 114 │ │ │ │ │ raise OSError( │
│ 115 │ │ │ │ │ │ "You seem to have cloned a repository without having git-lfs ins │
│ 116 │ │ │ │ │ │ "git-lfs and run git lfs install followed by git lfs pull in │
│ │
│/miniconda3/envs/i2p/lib/python3.8/codecs.py:322 in decode │
│ │
│ 319 │ def decode(self, input, final=False): │
│ 320 │ │ # decode input (taking the buffer into account) │
│ 321 │ │ data = self.buffer + input │
│ ❱ 322 │ │ (result, consumed) = self._buffer_decode(data, self.errors, final) │
│ 323 │ │ # keep undecoded input until the next call │
│ 324 │ │ self.buffer = data[consumed:] │
│ 325 │ │ return result │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xbc in position 0: invalid start byte
During handling of the above exception, another exception occurred:
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /LOG/realman/LLM/Image2Paragraph/main.py:23 in │
│ │
│ 20 │ │
│ 21 │ args = parser.parse_args() │
│ 22 │ │
│ ❱ 23 │ processor = ImageTextTransformation(args) │
│ 24 │ generated_text = processor.image_to_text(args.image_src) │
│ 25 │ generated_image = processor.text_to_image(generated_text) │
│ 26 │ ## then text to image │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/image_text_transformation.py:24 in init │
│ │
│ 21 │ def init(self, args): │
│ 22 │ │ # Load your big model here │
│ 23 │ │ self.args = args │
│ ❱ 24 │ │ self.init_models() │
│ 25 │ │ self.ref_image = None │
│ 26 │ │
│ 27 │ def init_models(self): │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/image_text_transformation.py:38 in init_models │
│ │
│ 35 │ │ self.image_caption_model = ImageCaptioning(device=self.args.image_caption_device │
│ 36 │ │ self.dense_caption_model = DenseCaptioning(device=self.args.dense_caption_device │
│ 37 │ │ self.gpt_model = ImageToText(openai_key) │
│ ❱ 38 │ │ self.controlnet_model = TextToImage(device=self.args.contolnet_device) │
│ 39 │ │ self.region_semantic_model = RegionSemantic(device=self.args.semantic_segment_de │
│ 40 │ │ print('\033[1;32m' + "Model initialization finished!".center(50, '-') + '\033[0m │
│ 41 │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/controlnet_model.py:15 in init │
│ │
│ 12 class TextToImage: │
│ 13 │ def init(self, device): │
│ 14 │ │ self.device = device │
│ ❱ 15 │ │ self.model = self.initialize_model() │
│ 16 │ │
│ 17 │ def initialize_model(self): │
│ 18 │ │ if self.device == 'cpu': │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/controlnet_model.py:22 in initialize_model │
│ │
│ 19 │ │ │ self.data_type = torch.float32 │
│ 20 │ │ else: │
│ 21 │ │ │ self.data_type = torch.float16 │
│ ❱ 22 │ │ controlnet = ControlNetModel.from_pretrained( │
│ 23 │ │ │ "fusing/stable-diffusion-v1-5-controlnet-canny", │
│ 24 │ │ │ torch_dtype=self.data_type, │
│ 25 │ │ │ map_location=self.device, # Add this line │
│ │
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :602 in from_pretrained │
│ │
│ 599 │ │ │ │ # if device_map is None, load the state dict and move the params from me │
│ 600 │ │ │ │ if device_map is None: │
│ 601 │ │ │ │ │ param_device = "cpu" │
│ ❱ 602 │ │ │ │ │ state_dict = load_state_dict(model_file, variant=variant) │
│ 603 │ │ │ │ │ model._convert_deprecated_attention_blocks(state_dict) │
│ 604 │ │ │ │ │ # move the params from meta device to cpu │
│ 605 │ │ │ │ │ missing_keys = set(model.state_dict().keys()) - set(state_dict.keys( │
│ │
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :125 in load_state_dict │
│ │
│ 122 │ │ │ │ │ │ "model. Make sure you have saved the model properly." │
│ 123 │ │ │ │ │ ) from e │
│ 124 │ │ except (UnicodeDecodeError, ValueError): │
│ ❱ 125 │ │ │ raise OSError( │
│ 126 │ │ │ │ f"Unable to load weights from checkpoint file for '{checkpoint_file}' " │
│ 127 │ │ │ │ f"at '{checkpoint_file}'. " │
│ 128 │ │ │ │ "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please s │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
OSError: Unable to load weights from checkpoint file for
'/.cache/huggingface/hub/models--fusing--stable-diffusion-v1-5-controlnet-canny/snapshots/7f2f69197050967007f6bbd23ab5e52f0384162a/d
iffusion_pytorch_model.safetensors' at
'/.cache/huggingface/hub/models--fusing--stable-diffusion-v1-5-controlnet-canny/snapshots/7f2f69197050967007f6bbd23ab5e52f0384162a/d
iffusion_pytorch_model.safetensors'. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
In order to debug, I try to build a new virtual env following the install.sh and deleted the cache model documents and re-downloaded them again by running the main.py. But the error still happens.
How can I deal with the bug?
My torch version is as follows:
torch 1.9.0+cu111
torchaudio 0.9.0
torchvision 0.10.0+cu111
The text was updated successfully, but these errors were encountered:
Hello
I have met the same error with you.
Did you find out the reason of this error?
I'm using a UTF-8 Ubuntu system to run this and suspected if it is caused by it.
Hi, it is a nice work. I followed the install.md to build the virtual env with scapy==3.0.0. But when I run the example with
python main.py --image_src "examples/3.jpg" --out_image_name "output/3_result.jpg"
, there is a OSError as follow:------This is time-consuming, please wait...------
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :109 in load_state_dict │
│ │
│ 106 │ │ if os.path.basename(checkpoint_file) == _add_variant(WEIGHTS_NAME, variant): │
│ 107 │ │ │ return torch.load(checkpoint_file, map_location="cpu") │
│ 108 │ │ else: │
│ ❱ 109 │ │ │ return safetensors.torch.load_file(checkpoint_file, device="cpu") │
│ 110 │ except Exception as e: │
│ 111 │ │ try: │
│ 112 │ │ │ with open(checkpoint_file) as f: │
│ │
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/safetensors/torch.py:261 in │
│ load_file │
│ │
│ 258 │ result = {} │
│ 259 │ with safe_open(filename, framework="pt", device=device) as f: │
│ 260 │ │ for k in f.keys(): │
│ ❱ 261 │ │ │ result[k] = f.get_tensor(k) │
│ 262 │ return result │
│ 263 │
│ 264 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
AttributeError: module 'torch' has no attribute 'frombuffer'
During handling of the above exception, another exception occurred:
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :113 in load_state_dict │
│ │
│ 110 │ except Exception as e: │
│ 111 │ │ try: │
│ 112 │ │ │ with open(checkpoint_file) as f: │
│ ❱ 113 │ │ │ │ if f.read().startswith("version"): │
│ 114 │ │ │ │ │ raise OSError( │
│ 115 │ │ │ │ │ │ "You seem to have cloned a repository without having git-lfs ins │
│ 116 │ │ │ │ │ │ "git-lfs and run
git lfs install
followed bygit lfs pull
in ││ │
│/miniconda3/envs/i2p/lib/python3.8/codecs.py:322 in decode │
│ │
│ 319 │ def decode(self, input, final=False): │
│ 320 │ │ # decode input (taking the buffer into account) │
│ 321 │ │ data = self.buffer + input │
│ ❱ 322 │ │ (result, consumed) = self._buffer_decode(data, self.errors, final) │
│ 323 │ │ # keep undecoded input until the next call │
│ 324 │ │ self.buffer = data[consumed:] │
│ 325 │ │ return result │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xbc in position 0: invalid start byte
During handling of the above exception, another exception occurred:
╭─────────────────────────────── Traceback (most recent call last) ────────────────────────────────╮
│ /LOG/realman/LLM/Image2Paragraph/main.py:23 in │
│ │
│ 20 │ │
│ 21 │ args = parser.parse_args() │
│ 22 │ │
│ ❱ 23 │ processor = ImageTextTransformation(args) │
│ 24 │ generated_text = processor.image_to_text(args.image_src) │
│ 25 │ generated_image = processor.text_to_image(generated_text) │
│ 26 │ ## then text to image │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/image_text_transformation.py:24 in init │
│ │
│ 21 │ def init(self, args): │
│ 22 │ │ # Load your big model here │
│ 23 │ │ self.args = args │
│ ❱ 24 │ │ self.init_models() │
│ 25 │ │ self.ref_image = None │
│ 26 │ │
│ 27 │ def init_models(self): │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/image_text_transformation.py:38 in init_models │
│ │
│ 35 │ │ self.image_caption_model = ImageCaptioning(device=self.args.image_caption_device │
│ 36 │ │ self.dense_caption_model = DenseCaptioning(device=self.args.dense_caption_device │
│ 37 │ │ self.gpt_model = ImageToText(openai_key) │
│ ❱ 38 │ │ self.controlnet_model = TextToImage(device=self.args.contolnet_device) │
│ 39 │ │ self.region_semantic_model = RegionSemantic(device=self.args.semantic_segment_de │
│ 40 │ │ print('\033[1;32m' + "Model initialization finished!".center(50, '-') + '\033[0m │
│ 41 │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/controlnet_model.py:15 in init │
│ │
│ 12 class TextToImage: │
│ 13 │ def init(self, device): │
│ 14 │ │ self.device = device │
│ ❱ 15 │ │ self.model = self.initialize_model() │
│ 16 │ │
│ 17 │ def initialize_model(self): │
│ 18 │ │ if self.device == 'cpu': │
│ │
│ /LOG/realman/LLM/Image2Paragraph/models/controlnet_model.py:22 in initialize_model │
│ │
│ 19 │ │ │ self.data_type = torch.float32 │
│ 20 │ │ else: │
│ 21 │ │ │ self.data_type = torch.float16 │
│ ❱ 22 │ │ controlnet = ControlNetModel.from_pretrained( │
│ 23 │ │ │ "fusing/stable-diffusion-v1-5-controlnet-canny", │
│ 24 │ │ │ torch_dtype=self.data_type, │
│ 25 │ │ │ map_location=self.device, # Add this line │
│ │
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :602 in from_pretrained │
│ │
│ 599 │ │ │ │ # if device_map is None, load the state dict and move the params from me │
│ 600 │ │ │ │ if device_map is None: │
│ 601 │ │ │ │ │ param_device = "cpu" │
│ ❱ 602 │ │ │ │ │ state_dict = load_state_dict(model_file, variant=variant) │
│ 603 │ │ │ │ │ model._convert_deprecated_attention_blocks(state_dict) │
│ 604 │ │ │ │ │ # move the params from meta device to cpu │
│ 605 │ │ │ │ │ missing_keys = set(model.state_dict().keys()) - set(state_dict.keys( │
│ │
│ /miniconda3/envs/i2p/lib/python3.8/site-packages/diffusers/models/modeling_utils.py │
│ :125 in load_state_dict │
│ │
│ 122 │ │ │ │ │ │ "model. Make sure you have saved the model properly." │
│ 123 │ │ │ │ │ ) from e │
│ 124 │ │ except (UnicodeDecodeError, ValueError): │
│ ❱ 125 │ │ │ raise OSError( │
│ 126 │ │ │ │ f"Unable to load weights from checkpoint file for '{checkpoint_file}' " │
│ 127 │ │ │ │ f"at '{checkpoint_file}'. " │
│ 128 │ │ │ │ "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please s │
╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
OSError: Unable to load weights from checkpoint file for
'/.cache/huggingface/hub/models--fusing--stable-diffusion-v1-5-controlnet-canny/snapshots/7f2f69197050967007f6bbd23ab5e52f0384162a/d
iffusion_pytorch_model.safetensors' at
'/.cache/huggingface/hub/models--fusing--stable-diffusion-v1-5-controlnet-canny/snapshots/7f2f69197050967007f6bbd23ab5e52f0384162a/d
iffusion_pytorch_model.safetensors'. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
In order to debug, I try to build a new virtual env following the install.sh and deleted the cache model documents and re-downloaded them again by running the main.py. But the error still happens.
How can I deal with the bug?
My torch version is as follows:
torch 1.9.0+cu111
torchaudio 0.9.0
torchvision 0.10.0+cu111
The text was updated successfully, but these errors were encountered: