-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaddress.py
273 lines (221 loc) · 8.71 KB
/
address.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from nltk.tokenize import TreebankWordTokenizer
from sklearn.cluster import KMeans
import numpy as np
import datefinder
import json
import sys
import re
from utils import parsePage, getData, getScores
from models import rulEx
sys.path.insert(0, './database/')
st = TreebankWordTokenizer()
with open('./database/hard_data/streets.json', 'r') as f:
streets = json.load(f)
with open('./database/hard_data/states.json', 'r') as f:
states = json.load(f)
with open('./database/hard_data/cities.json', 'r') as f:
cities = json.load(f)
with open('./database/hard_data/countries.json', 'r') as f:
countries = json.load(f)
def getAddress(url, predictors):
'''
Finds all the addresses on the web-page
Parameters
----------
url : The url of the page
predictors : a list of tuples which are like (parameters, model)
Here parameters is a dictionary of the hyper-parameters of the model
Returns
-------
final : A list of lists, where every list contains the paragraph which are the
part of the same address.
'''
soup, paras, paradict = parsePage(url)
# print soup
addresses = []
if 'tripadvisor' in url:
final = TripAdAddr(soup)
else:
results = set()
for params, pred in predictors:
# get the feature vectors for the text on the web-page as required by the
X = getData(paras, params['NUM_FEATURES'], params[
'BATCH_SIZE'], SEQ_LENGTH=params['SEQ_LENGTH'])
res = pred(X).flatten()
addrs = getLabels(res, paras, params['NUM_CLUST'])
# take the intersection of the results extracted by the classifiers...
# success depends heavily on the ability of the classifiers to find all the addresses
results = results.intersection(addrs)
#print getScores(pred, paras, params)
# the final address extractor is the hard coded rule-based function which works when
# there are telephone numbers in the address
results = results.union(rulEx(paras))
# to align the addresses based on their position on the page
addresses = sorted(results, key=lambda x: x[1])
final = accuAddr(addresses)
# print final
return final
def TripAdAddr(soup):
'''
Find all the addresses on a TripAdvisor page.
Note : TripAdvisor has only one point of interest per page... hence no loops here
Parameters
----------
soup : The soup object corresponding to the TravelAdvisor page
Returns
-------
final : A list of lists, where every list contains the index of paragraph which are the
part of the same address.
'''
# remove the trailing spaces and the extra commas
strt = soup.findAll("span", {"class": 'street-address'})[0].get_text().encode('ascii', 'ignore').strip().strip(',')
loc = soup.findAll("span", {"class": 'locality'})[0].get_text().encode('ascii', 'ignore').strip().strip(',')
count = soup.findAll("span", {"class": 'country-name'})[0].get_text().encode('ascii', 'ignore').strip().strip(',')
return [[strt + ", " + loc + ", " + count]]
def accuAddr(addresses):
'''
After identifying the individual paragraphs which are of address type, we need to
combine them into a single structure as addresses can be hierarchical
Parameters
----------
url : A list numbers addresses where each entry is the index of an address
Returns
-------
final : A list of lists, where every list contains the index of paragraph which are the
part of the same address.
'''
i = 0
final = []
while i < len(addresses):
accued = [addresses[i][0]]
while i + 1 < len(addresses) and (addresses[i + 1][1] - addresses[i][1]) <= 2:
accued += [addresses[i + 1][0]]
i += 1
# if not hasdate(accued):
final += [accued]
i += 1
return final
def hasdate(address):
'''
Function for removing dates from addresses. Dates were still coming in the addresses,
so I deecided to manually filter them out
Parameters
----------
address :
predictors : a list of tuples which are like (parameters, model)
Here parameters is a dictionary of the hyper-parameters of the model
Returns
-------
final : A list of lists, where every list contains the index of paragraph which are the
part of the same address.
'''
str1 = " ".join(address)
matches = datefinder.find_dates(str1, strict=True)
for match in matches:
return True
return False
def getLabels(scores, paragraphs, NUM_CLUST=2):
'''
This function decides which paragraphs are actually addresses given their probabilities
as returned by the classifier.
We cant hardcode a certain threshold for deciding addresses as it may depend from page
to page so we therefore segregate the paragraphs into 2 clusters with their score as the key.
Parameters
----------
scores : A numpy array, The scores as assigned to the paragraphs by the classifier
paragraphs : A list of all paragraphs on the webpage
NUM_CLUST : The number of clusters into which we want to segregate the paragraphs...
Default value is 2 as it works well in practice.
Returns
-------
addresses : A list of tuples, The tuple elements of the tuple are the paragraph
and it's index in the paras list.
'''
scores = scores.reshape(-1, 1)
est = KMeans(n_clusters=NUM_CLUST)
est.fit(scores)
labels = est.labels_
# A dictionary to keep track of the paragraphs and which clusters they belong to
dict = {}
for i in range(NUM_CLUST):
dict[i] = []
# this is the index of the paragraph which is the 'best address'...
# if it's score is less than 0.5(whimsically chosen) then we say
# that there are no addresses on the page
bestaddr = np.argmax(scores)
if scores[bestaddr] < 0.5:
return []
# segregate the paragraphs into 'NUM_CLUST' clusters
for index, para in enumerate(paragraphs):
dict[labels[index]].append((para, index))
# the required addresses belong to the cluster to which the
# 'best address' belongs to
addresses = dict[labels[bestaddr]]
return addresses
# new_address tries to do both ie. hierarchical and one-line addresses in one go
# this function is depreciated...
def new_address(text):
paragraphs = [p.strip() for p in text.split('\n') if len(p.strip()) > 2]
tokked = [st.tokenize(p) for p in paragraphs]
lens = [len(tokked) for p in paragraphs]
lens = [len(st.tokenize(p)) for p in paragraphs]
regexp = re.compile(
r'\+[0-9][0-9]*|\([0-9]{3}\)|[0-9]{4} [0-9]{4}|([0-9]{3,4}[- ]){2}[0-9]{3,4}|[0-9]{10}')
# print paragraphs
# print lens
possible_addresses = []
idx = 0
while idx < len(paragraphs):
# first filter the paragraphs by phone number
if bool(regexp.search(paragraphs[idx])):
poss = []
poss.append(paragraphs[idx])
temp = idx - 1
# print paragraphs[idx]
# go back till we are seeing an address
while isAddr(paragraphs[temp]) and lens[temp] < 10:
poss.append(paragraphs[temp])
temp -= 1
if len(poss) <= 15:
possible_addresses.append(poss[::-1])
idx += 1
else:
# some random number for max. length of an address
poss = []
if lens[idx] <= 20:
if isAddr(paragraphs[idx]):
temp = idx
while isAddr(paragraphs[temp]) or bool(regexp.search(paragraphs[temp])):
if lens[temp] >= 10:
break
poss.append(paragraphs[temp])
temp += 1
if temp >= len(paragraphs):
break
# address less than 10 lines
if len(poss) < 10:
possible_addresses.append(poss)
idx = temp
idx += 1
return possible_addresses
# use ML techniques to fix the score increments
# this is also depreciated
def isAddr(test_addr):
score = 0
numterm = 0
for terms in st.tokenize(test_addr):
numterm += 1
# terms = terms.lower()
if terms in states:
# print "state " + terms + " found!"
score += 1
if terms.lower() in streets:
# print "street " + terms + " found!"
score += 3
if terms in cities:
# print "city " + terms + " found!"
score += 1
if terms in countries:
# print "country " + terms + " found!"
score += 1
return float(score) / numterm > 0.4