-
Notifications
You must be signed in to change notification settings - Fork 10
/
train.py
380 lines (325 loc) · 15.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import argparse
from tqdm import tqdm
import numpy as np
import os
from models import networks
from data.cityscapes_instances import CityscapesInstances, CityscapesInstances_comp
from data.buildings import BuildingsDataset
from utils.saver import Saver
from utils.summaries import TensorboardSummary
from utils.metrices import get_ap_scores, get_iou
from data import transforms
from models.loss_functions import curvature_loss, dist_loss
def train_epoch(model, optimizer, data_loader, epoch, args, summary, device):
model.train()
iterator = tqdm(data_loader)
for i, (image, mask) in enumerate(iterator):
image = image.to(device)
mask = mask.to(device)
pred_masks, pred_nodes = model(image, args.iter)
start_index = 0
loss_masks = [F.mse_loss(pred_masks[k].squeeze(1), mask) for k in range(start_index, len(pred_masks))]
loss_balloon = [(1 - pred_masks[k]).mean() for k in range(len(pred_masks))]
loss_curve = [curvature_loss(nodes) for nodes in pred_nodes]
loss_dist = [dist_loss(nodes) for nodes in pred_nodes]
loss_masks_agg = []
loss_balloon_agg = []
loss_curve_agg = []
loss_dist_agg = []
loss_masks_agg.append(loss_masks[-1])
loss_balloon_agg.append(args.lmd_balloon * loss_balloon[-1])
loss_curve_agg.append(args.lmd_curve * loss_curve[-1])
loss_dist_agg.append(args.lmd_dist * loss_dist[-1])
if len(loss_masks) > 2:
loss_masks_agg += [loss_masks[j + start_index]
for j in range(len(loss_masks[start_index:-1]))]
loss_balloon_agg += [args.lmd_balloon * loss_balloon[j + start_index]
for j in range(len(loss_masks[start_index:-1]))]
loss_curve_agg += [args.lmd_curve * loss_curve[j + start_index]
for j in range(len(loss_masks[start_index:-1]))]
loss_dist_agg += [args.lmd_dist * loss_dist[j + start_index]
for j in range(len(loss_masks[start_index:-1]))]
loss_ac = sum(loss_masks_agg) + sum(loss_balloon_agg) + sum(loss_dist_agg) + sum(loss_curve_agg)
loss = loss_ac
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Metrices
iou_ac = np.mean(get_iou(pred_masks[-1].gt(0.5), mask.byte()))
ap_ac = np.mean(get_ap_scores(pred_masks[-1], mask))
iterator.set_description(
'(train | {}) Epoch [{epoch}/{epochs}] :: Loss {loss:.4f} | Loss AC {loss_ac:.4f}'.format(
args.checkname + '_' + args.exp,
epoch=epoch + 1,
epochs=args.epochs,
loss=loss.item(),
loss_ac=loss_ac.item()))
global_step = epoch * len(data_loader) + i
summary.add_scalar('train/loss', loss.item(), global_step)
summary.add_scalar('train/loss_ac', loss_ac.item(), global_step)
summary.add_scalar('train/loss_masks_agg', sum(loss_masks_agg).item(), global_step)
summary.add_scalar('train/loss_ballon_agg', sum(loss_balloon_agg).item(), global_step)
summary.add_scalar('train/loss_curv_agg', sum(loss_curve_agg).item(), global_step)
summary.add_scalar('train/loss_dist_agg', sum(loss_dist_agg).item(), global_step)
summary.add_scalar('train/iou_ac', np.mean(iou_ac), global_step)
summary.add_scalar('train/ap_ac', np.mean(ap_ac), global_step)
summary.visualize_image('train',
image,
mask.unsqueeze(1),
pred_masks[-1],
pred_masks[0],
global_step)
def val_epoch(model, data_loader, epoch, args, summary, device):
model.eval()
iterator = tqdm(data_loader)
mIoU_ac, mAP_ac, mF1_ac = [], [], []
for i, (image, mask) in enumerate(iterator):
image = image.to(device)
mask = mask.to(device)
pred_mask_ac = model(image, args.iter)
pred_mask_ac = F.interpolate(pred_mask_ac, size=mask.shape[1:], mode='bilinear')
loss_masks_ac = F.mse_loss(pred_mask_ac.squeeze(1), mask)
# Metrices
iou_ac = get_iou(pred_mask_ac.gt(0.2), mask.byte())
ap_ac = get_ap_scores(pred_mask_ac, mask)
mIoU_ac += iou_ac
mAP_ac += ap_ac
iterator.set_description(
'(val | {}) Epoch [{epoch}/{epochs}] :: Loss AC {loss_ac:.4f}'.format(
args.checkname + '_' + args.exp,
epoch=epoch + 1,
epochs=args.epochs,
loss_ac=loss_masks_ac.item()))
global_step = (epoch // args.eval_rate) * len(data_loader) + i
summary.add_scalar('val/loss_ac', loss_masks_ac.item(), global_step)
summary.add_scalar('val/iou_ac', np.mean(iou_ac), global_step)
summary.add_scalar('val/ap_ac', np.mean(ap_ac), global_step)
ind = np.argwhere(np.array(iou_ac) < 0.5).flatten().tolist()
summary.visualize_image('val',
image,
mask.unsqueeze(1)[ind],
pred_mask_ac[ind],
pred_mask_ac[ind],
global_step)
if ind:
summary.visualize_image('val_BAD',
image[ind],
mask.unsqueeze(1)[ind],
pred_mask_ac[ind],
pred_mask_ac[ind],
global_step)
return np.mean(mIoU_ac), np.mean(mAP_ac)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train a segmentation')
# Training
parser.add_argument('--epochs', type=int,
default=5000,
help='Number of epochs')
parser.add_argument('--start-epoch', type=int,
default=0,
help='Starting epoch')
parser.add_argument('--batch-size', type=int,
default=64,
help='Batch size')
parser.add_argument('--lr', type=float,
default=1e-4,
help='Learning rate')
parser.add_argument('--lr-step', type=int,
default=200,
help='LR scheduler step')
# Architecture
parser.add_argument('--arch', type=str,
default='unet',
choices=['unet', 'resnet'],
help='Network architecture. unet or resnet')
parser.add_argument('--image-size', type=int,
default=128,
help='Neural Renderer output size')
parser.add_argument('--dec-size', type=int,
default=64,
help='Spatial size of the decoder. Only relevant for ResNet')
parser.add_argument('--enc-dim', type=int,
default=512,
help='Encoder dim(channels). Only relevant for UNet')
parser.add_argument('--dec-dim', type=int,
default=256,
help='Decoder dim(channels)')
parser.add_argument('--stages',
type=int,
nargs='+',
default=[0, 1, 2, 3],
help='ResNet skip connections')
parser.add_argument('--drop', type=float,
default=0.1,
help='Dropout rate')
# Active contour
parser.add_argument('--num-nodes', type=int,
default=70,
help='Number of nodes')
parser.add_argument('--iter', type=int,
default=3,
help='AC number of iterations')
parser.add_argument('--lmd-balloon', type=float,
default=0.01,
help='Balloon')
parser.add_argument('--lmd-curve', type=float,
default=0.001,
help='Curvature')
parser.add_argument('--lmd-dist', type=float,
default=0.1,
help='Distance')
# Data
parser.add_argument('--train-dataset', type=str,
default='cityscapes',
help='Training dataset')
parser.add_argument('--ann-train', type=str,
default='train',
help='Split for training')
parser.add_argument('--ann-val', type=str,
default='val',
help='Split tor evaluation')
# Cityscapes Data
parser.add_argument('--inst-path', type=str,
default='/path/to/cityscapes_instances',
help='Path to Cityscapes instances directory')
parser.add_argument('--ann-type', type=str,
default='full',
choices=['comp', 'full'],
help='Type of annotation, full instance or only components')
parser.add_argument('--class-name', type=str,
default='rider',
help='Class for Cityscapes dataset')
parser.add_argument('--loops', type=int,
default=10,
help='Data repetition in Cityscapes dataset')
# Buildings Data
parser.add_argument('--data-path', type=str,
default='/path/to/building-dataset',
help='Path to buildings dataset directory')
# Misc
parser.add_argument('--eval-rate', type=int,
default=1,
help='Evaluate after eval_rate epochs')
parser.add_argument('--save-rate', type=int,
default=1,
help='Save rate is save_rate * eval_rate')
parser.add_argument('--checkname', type=str,
default='DEBUG',
help='Checkname')
parser.add_argument('--resume', type=str,
default=None,
help='Resume file path')
args = parser.parse_args()
args.checkname = args.class_name + '_' + args.checkname + '_' + args.arch
torch.multiprocessing.set_start_method('spawn')
# Define Saver
saver = Saver(args)
saver.save_experiment_config()
# Define Tensorboard Summary
summary = TensorboardSummary(saver.experiment_dir)
args.exp = saver.experiment_dir.split('_')[-1]
if args.train_dataset == 'cityscapes':
# Data
train_trans = transforms.Compose([
transforms.ToPILImage(),
# transforms.RandomResizedCrop((args.image_size, args.image_size), scale=(0.2, 2)),
transforms.Resize((args.image_size, args.image_size)),
transforms.RandomHorizontalFlip(),
transforms.RandomAffine(22, scale=(0.75, 1.25)),
transforms.ToTensor(),
transforms.Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
# transforms.NormalizeInstance()
])
val_trans = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.image_size, args.image_size), do_mask=False),
transforms.ToTensor(),
transforms.Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
# transforms.NormalizeInstance()
])
if args.ann_type == 'comp':
train_ds = CityscapesInstances_comp(args.inst_path,
args.ann_train,
args.class_name,
transformations=train_trans,
loops=args.loops)
elif args.ann_type == 'full':
train_ds = CityscapesInstances(args.inst_path,
args.ann_train,
args.class_name,
transformations=train_trans,
loops=args.loops)
else:
raise Exception('problem with annotation type')
val_ds = CityscapesInstances(args.inst_path,
args.ann_val,
args.class_name,
transformations=val_trans,
loops=1)
else:
# Data
train_trans = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.image_size, args.image_size)),
transforms.RandomAffineFromSet(degrees=[0, 15, 60, 90, 135, 180, 225, 270], scale=(0.75, 1.25)),
transforms.ToTensor(),
# transforms.Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
transforms.NormalizeInstance()
])
val_trans = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
# transforms.Normalize(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375])
transforms.NormalizeInstance()
])
train_ds = BuildingsDataset(args.data_path,
args.ann_train,
transformations=train_trans)
val_ds = BuildingsDataset(args.data_path,
args.ann_val,
transformations=val_trans)
train_dl = DataLoader(train_ds, batch_size=args.batch_size, shuffle=True, num_workers=2, drop_last=True)
val_dl = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=1)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = networks.CircleNet(args).to(device)
optimizer = torch.optim.Adam(model.parameters(), args.lr, weight_decay=5e-5)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_step, gamma=0.1)
if args.resume:
if args.resume == 'last':
args.resume = os.path.join(saver.directory, 'model_last.pth.tar')
elif args.resume == 'best':
args.resume = os.path.join(saver.directory, 'model_best.pth.tar')
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
# scheduler.load_state_dict(checkpoint['scheduler']),
best_pred = checkpoint['best_pred']
best_pred = 0
for epoch in range(args.start_epoch, args.epochs):
scheduler.step()
train_epoch(model, optimizer, train_dl, epoch, args, summary, device)
if epoch % args.eval_rate == 0:
mIoU_ac, mAP_ac = val_epoch(model, val_dl, epoch, args, summary, device)
global_step = epoch // args.eval_rate
summary.add_scalar('val/mIoU_ac', mIoU_ac, global_step)
summary.add_scalar('val/mAP_ac', mAP_ac, global_step)
is_best = False
if mIoU_ac > best_pred:
best_pred = mIoU_ac
is_best = True
if epoch % (args.save_rate * args.eval_rate) == 0:
model_state_dict = model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'best_pred': best_pred,
}, is_best)