-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.cpp
721 lines (644 loc) · 25.2 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
extern "C"{
#include "paf.h"
}
#include <string.h>
#include <iostream>
#include "graph.h"
#include "sys.cpp"
#include <fstream>
#include "bubble_chain.h"
#include "paf_intersect.h"
#include "resolve_repeat_haplotype.h"
#include "hic_mapping.h"
#define PSTOOLS_VERSION "0.1"
typedef struct {
int num_reads;
char** read_file_names;
char* output_file_name;
int thread_num;
} ps_opt_t;
ps_opt_t asm_opt;
void init_opt(ps_opt_t* asm_opt)
{
memset(asm_opt, 0, sizeof(ps_opt_t));
asm_opt->num_reads = 0;
asm_opt->read_file_names = NULL;
asm_opt->thread_num = 1;
}
void destory_opt(ps_opt_t* asm_opt)
{
if(asm_opt->read_file_names != NULL)
{
free(asm_opt->read_file_names);
}
}
static ko_longopt_t long_options[] = {
{ "version", ko_no_argument, 300 },
{ "write-paf", ko_no_argument, 302 },
{ 0, 0, 0 }
};
void Print_H(ps_opt_t* asm_opt)
{
fprintf(stderr, "Usage: pstools [options] <input> <output> <...>\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " Assembly:\n");
fprintf(stderr, " -o FILE prefix of output files [%s]\n", asm_opt->output_file_name);
fprintf(stderr, " -t INT number of threads [%d]\n", asm_opt->thread_num);
fprintf(stderr, " --version show version number\n");
fprintf(stderr, " -h show help information\n");
fprintf(stderr, "Example: ./pstools bubble_chain myfile.gfa -o []\n");
fprintf(stderr, "Example: ./pstools resolve_repeats myfile.gfa [].paf.gz -o []\n");
fprintf(stderr, "Example: ./pstools asm_component \n");
fprintf(stderr, "Example: ./pstools filter_paf -t[n] myfile.gfa [].paf.gz -o [].paf \n");
fprintf(stderr, "See `man ./pstools.1' for detailed description of these command-line options.\n");
}
void get_queries(int argc, char *argv[], ketopt_t* opt, ps_opt_t* asm_opt)
{
if(opt->ind == argc)
{
return;
}
asm_opt->num_reads = argc - opt->ind;
asm_opt->read_file_names = (char**)malloc(sizeof(char*)*asm_opt->num_reads);
long long i;
gzFile dfp;
for (i = 0; i < asm_opt->num_reads; i++)
{
asm_opt->read_file_names[i] = argv[i + opt->ind];
dfp = gzopen(asm_opt->read_file_names[i], "r");
if (dfp == 0)
{
fprintf(stderr, "[ERROR] Cannot find the input read file: %s\n",
asm_opt->read_file_names[i]);
exit(0);
}
gzclose(dfp);
}
}
int check_option(ps_opt_t* asm_opt)
{
if(asm_opt->read_file_names == NULL || asm_opt->num_reads == 0)
{
fprintf(stderr, "[ERROR] missing input: please specify a read file\n");
return 0;
}
if(asm_opt->output_file_name == NULL)
{
fprintf(stderr, "[ERROR] missing output: please specify the output name (-o)\n");
return 0;
}
if(asm_opt->thread_num < 1)
{
fprintf(stderr, "[ERROR] the number of threads must be > 0 (-t)\n");
return 0;
}
return 1;
}
int CommandLine_process(int argc, char *argv[], ps_opt_t* asm_opt)
{
ketopt_t opt = KETOPT_INIT;
int c;
while ((c = ketopt(&opt, argc, argv, 1, "hvt:o", long_options)) >= 0) {
if (c == 'h')
{
Print_H(asm_opt);
return 0;
}
else if (c == 't') asm_opt->thread_num = atoi(opt.arg);
else if (c == 'o') asm_opt->output_file_name = opt.arg;
else if (c == ':')
{
fprintf(stderr, "[ERROR] missing option argument in \"%s\"\n", argv[opt.i - 1]);
return 1;
}
else if (c == '?')
{
fprintf(stderr, "[ERROR] unknown option in \"%s\"\n", argv[opt.i - 1]);
return 1;
}
}
if (argc == opt.ind)
{
Print_H(asm_opt);
return 0;
}
get_queries(argc, argv, &opt, asm_opt);
return check_option(asm_opt);
}
static inline int64_t mm_parse_num(const char *str)
{
double x;
char *p;
x = strtod(str, &p);
if (*p == 'G' || *p == 'g') x *= 1e9;
else if (*p == 'M' || *p == 'm') x *= 1e6;
else if (*p == 'K' || *p == 'k') x *= 1e3;
return (int64_t)(x + .499);
}
asg_t* gfa_read_cerr(char* gfa_file) {
asg_t* GFAobj = gfa_read(gfa_file);
if (GFAobj == nullptr) {
std::cerr << "ERROR: failed to read the graph." << std::endl;
} else {
std::cout << "GFA file read." << std::endl;
}
return GFAobj;
}
// ./gfatools view -l utg028545l -r 50 ../../HG002-34X-r244.r_utg.x.gfa > ../../HG002-34X-r244.sub2.gfa
// ./gfatools view -l utg001423l -r 50 ../../HG002-34X-r244.r_utg.x.gfa > ../../HG002-34X-r244.sub4.gfa
// ./gfatools view -l utg036600l -r 100 ../../HG002-34X-r244.r_utg.x.gfa > ../../HG002-34X-r244.sub5.gfa
// ./bc intersect myfile0.gfa ../test1E4.paf ../test_sub.paf
// ./bc intersect ../HG002-34X-r244.sub3.gfa ../test1E4.paf ../test_sub2.paf
// utg000163l
// utg000609l
int main_intersect(int argc, char* argv[]) {
paf_reader reader;
printf("start main\n");
cout << argc <<endl;
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " [gfa-file] [paf-file]" << std::endl;
return 1;
}
// char *sub_gfa_name = argv[1]; // myfile0.gfa
char *paf_name = argv[2]; // ../test1E4.paf // I modified this so that some of the nodes would actually match
char *paf_output_filename = argv[3]; // ../test_sub.paf
asg_t *GFAobj = gfa_read_cerr(argv[1]);
paf_file_t *paf_file = reader.paf_open(paf_name);
output_paf_intersect(GFAobj, paf_file, paf_output_filename, reader);
printf("finish main\n");
return 0;
}
int main_bubble_chain(int argc, char* argv[]) {
// printf("start main\n");
// if (argc != 3) {
// std::cerr << "Usage: " << argv[0] << " <gfa-file> <output-directory>" << std::endl;
// return 1;
// }
// asg_t* g = gfa_read_cerr(argv[1]);
// // print_gfa(GFAobj);
// vector<uint32_t> sources = get_sources(g);
// // get_bubble_chain_graph(g, sources);
// get_bubbles(g,string(argv[2]));
// printf("finish main\n");
return 0;
}
int main_resolve_repeat(int argc, char* argv[]) {
// printf("start main\n");
// asg_t* graph;
// // paf_file_t *paf_file;
// // struct access *paf_index;
// if(argc!=4){
// cout << "Usage: resolve_repeat <paf file> <gfa file> <output_directory>" << endl;
// return -1;
// }
// repeat_resolver resolver;
// char* paf_filename = argv[1];
// char* gfa_filename = argv[2];
// graph = gfa_read(gfa_filename);
// if (graph == nullptr) {
// cerr << "ERROR: failed to read the graph." << endl;
// } else {
// cout << "GFA file read." << endl;
// }
// resolver.name_index_mapping = name2idx(graph);
// paf_reader reader;
// vector<vector<paf_rec_str_t>>* ordered_records = resolver.get_records_from_paf_file(reader,paf_filename);
// map<uint32_t,map<uint32_t,set<uint32_t>>>* bubble_chain_graph = get_bubbles(graph,string(argv[3]));
// // for(auto a : count_begin_end){
// // cout << graph->seq[a.first[0]>>1].name << " to " << graph->seq[a.first[1]>>1].name << ": " << a.second << endl;
// // }
// map<set<uint32_t>,vector<vector<paf_rec_str_t>>>* repeating_nodes = resolver.check_for_same_pos( ordered_records, graph, bubble_chain_graph);
// resolver.checkForMatch(repeating_nodes, graph);
// vector<vector<uint32_t>>* supported_pathes = resolver.count_support_reads_for_branches(ordered_records, bubble_chain_graph, graph);
// cout << "finish getting supported pathes" << endl;
// set<vector<uint32_t>>* after_covered = resolver.cover_gaps_in_long_path(supported_pathes);
// cout << "finish trying to cover gaps in supported pathes" << endl;
// free(supported_pathes);
// get_seperate_haplotype(after_covered, ordered_records, bubble_chain_graph, graph);
// free(ordered_records);
// resolver.save_pathes_to_file(after_covered,bubble_chain_graph,graph,string(argv[3]));
// cout << "finish saving pathes to files" << endl;
// free(after_covered);
// free(bubble_chain_graph);
// printf("finish main\n");
return 0;
}
int main_resolve_haplotypes(int argc, char* argv[]) {
ketopt_t o = KETOPT_INIT;
int c,n_threads = 8;
string enzymes_unsplit;
string identityFile;
bool check_identity = false;
while ((c = ketopt(&o, argc, argv, 1, "t:e:i:f:", 0)) >= 0) {
if (c == 't') n_threads = atoi(o.arg);
else if (c == 'e') enzymes_unsplit = string(o.arg);
else if (c == 'i') check_identity = strcmp(o.arg, "false");
else if (c == 'f') identityFile = string(o.arg);
}
if (argc - o.ind < 3) {
fprintf(stderr, "Usage: pstools resolve_haplotypes [options] <hic_mapping file> <gfa file> <output_directory>\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -t INT number of threads [%d]\n", n_threads);
fprintf(stderr, " -e STR enzymes separated by comma, optional [%s]\n", enzymes_unsplit.c_str());
fprintf(stderr, " -f STR identity file path, identity check will be ran if it is enabled and no file is given [%s]\n", identityFile.c_str());
fprintf(stderr, " -i BOOL enable identity check on contigs, exclude identical ones while scaffolding [%s]\n", (check_identity ? "true":"false"));
return 1;
}
vector<string> enzymes;
if(enzymes_unsplit.size()>1){
stringstream s_stream(enzymes_unsplit);
while(s_stream.good()) {
string substr;
getline(s_stream, substr, ',');
substr.erase(remove(substr.begin(), substr.end(), '^'), substr.end());
enzymes.push_back(substr);
}
}
char* connectionFile = argv[o.ind];
char* gfa_filename = argv[o.ind+1];
char* output_directory = argv[o.ind+2];
printf("start main\n");
asg_t* graph = gfa_read(gfa_filename);
// for(int i = 0; i<graph->n_seq; i++){
// cout << graph->seq[0].len << "\t" << string(graph->seq[0].seq).length() << endl;
// cout << graph->seq[asg_arc_a(graph,0)[0].v>>1].len << "\t" << string(graph->seq[asg_arc_a(graph,0)[0].v>>1].seq).length() << endl;
// cout << asg_arc_a(graph,0)[0].ol << endl;
// }
// graph->seq[asg_arc_a(graph,0)[0].v>>1].len
uint32_t **connections_foward;
CALLOC(connections_foward,graph->n_seq);
for(int i = 0; i< graph->n_seq; i++){
CALLOC(connections_foward[i], graph->n_seq);
memset(connections_foward[i], 0, sizeof(*connections_foward[i]));
}
uint32_t **connections_backward;
CALLOC(connections_backward,graph->n_seq);
for(int i = 0; i< graph->n_seq; i++){
CALLOC(connections_backward[i], graph->n_seq);
memset(connections_backward[i], 0, sizeof(*connections_backward[i]));
}
ifstream infile(connectionFile);
uint32_t i,j,count_forward,count_backward;
while(infile >> i >> j >> count_backward >> count_forward){
connections_backward[i][j] = count_backward;
connections_backward[j][i] = count_backward;
connections_foward[i][j] = count_forward;
connections_foward[j][i] = count_forward;
}
map<uint32_t,map<uint32_t,set<uint32_t>>>* bubble_chain_graph = get_bubbles(graph,string(output_directory),connections_foward,connections_backward);
get_haplotype_path(connections_foward, connections_backward, graph, bubble_chain_graph, output_directory,n_threads, enzymes, identityFile, check_identity);
return 0;
}
int main_obtain_graph_sequence(int argc, char* argv[]){
printf("start main\n");
cout << argc <<endl;
if (argc < 4) {
std::cerr << "Usage: " << argv[0] << " [full-gfa-file] [gfa-file] [output-gfa-file]" << std::endl;
return 1;
}
ifstream GFA_FULL(argv[1]);
ofstream result(argv[3]);
asg_t *GFA_PART = gfa_read_cerr(argv[2]);
set<string> nodes;
for(int i = 0; i < GFA_PART->n_seq; i++){
nodes.insert(string(GFA_PART->seq[i].name));
}
string line;
while (getline(GFA_FULL, line))
{
istringstream iss(line);
string a,b,c,d,e,f,g;
iss >> a;
if(a[0]=='S'){
iss >> b;
if(nodes.find(b)!=nodes.end()){
result << line << endl;
}
}else if(a[0]=='L'){
iss >> b;
iss >> c;
iss >> d;
if(nodes.find(b)!=nodes.end() && nodes.find(d)!=nodes.end()){
result << line << endl;
}
}
// process pair (a,b)
}
GFA_FULL.close();
result.close();
printf("finish main\n");
return 0;
}
int main_hic_mapping(int argc, char* argv[]){
return main_hic_map(argc, argv);
}
// int main_completeness_check(int argc, char* argv[]){
// return main_completeness(argc, argv);
// }
// int main_switch_error_check(int argc, char *argv[]){
// return main_switch_error(argc, argv);
// }
// int main_qv_check(int argc, char *argv[])
// {
// yak_qopt_t opt;
// yak_ch_t *ch = 0;
// ketopt_t o = KETOPT_INIT;
// int64_t cnt[YAK_N_COUNTS], hist[YAK_N_COUNTS];
// int c, i, kmer;
// yak_qstat_t qs;
// yak_qopt_init(&opt);
// while ((c = ketopt(&o, argc, argv, 1, "K:t:l:f:pe:", 0)) >= 0) {
// if (c == 'K') opt.chunk_size = mm_parse_num(o.arg);
// else if (c == 'l') opt.min_len = mm_parse_num(o.arg);
// else if (c == 'f') opt.min_frac = atof(o.arg);
// else if (c == 't') opt.n_threads = atoi(o.arg);
// else if (c == 'p') opt.print_each = 1;
// else if (c == 'e') opt.fpr = atof(o.arg);
// }
// if (argc - o.ind < 2) {
// fprintf(stderr, "Usage: pstools eval qv [options] <kmers.yak> <prediction.fa>\n");
// fprintf(stderr, "Options:\n");
// fprintf(stderr, " -l NUM min sequence length [%d]\n", opt.min_len);
// fprintf(stderr, " -f FLOAT min k-mer fraction [%g]\n", opt.min_frac);
// fprintf(stderr, " -e FLOAT false positive rate [%g]\n", opt.fpr);
// fprintf(stderr, " -p print QV for each sequence\n");
// fprintf(stderr, " -t INT number of threads [%d]\n", opt.n_threads);
// fprintf(stderr, " -K NUM batch size [1g]\n");
// return 1;
// }
// ch = yak_ch_restore(argv[o.ind]);
// assert(ch);
// kmer = ch->k;
// yak_ch_hist(ch, hist, opt.n_threads);
// printf("CC\tCT kmer_occurrence short_read_kmer_count raw_input_kmer_count adjusted_input_kmer_count\n");
// printf("CC\tFR fpr_lower_bound fpr_upper_bound\n");
// printf("CC\tER total_input_kmers adjusted_error_kmers\n");
// printf("CC\tCV coverage\n");
// printf("CC\tQV raw_quality_value adjusted_quality_value\n");
// printf("CC\n");
// yak_qv(&opt, argv[o.ind+1], ch, cnt);
// yak_qv_solve(hist, cnt, kmer, opt.fpr, &qs);
// for (i = (1<<YAK_COUNTER_BITS) - 1; i >= 0; --i)
// printf("CT\t%d\t%ld\t%ld\t%.3f\n", i, (long)hist[i], (long)cnt[i], qs.adj_cnt[i]);
// printf("FR\t%.3g\t%.3g\n", qs.fpr_lower, qs.fpr_upper);
// printf("ER\t%ld\t%.3f\n", (long)qs.tot, qs.err);
// printf("CV\t%.3f\n", qs.cov);
// printf("QV\t%.3f\t%.3f\n", qs.qv_raw, qs.qv);
// yak_ch_destroy(ch);
// return 0;
// }
int main_eval(int argc, char *argv[]){
int ret = 0;
yak_copt_t opt;
yak_qopt_t qopt;
yak_ch_t *haplo_h;
yak_ch_t *hic_h;
ketopt_t o = KETOPT_INIT;
int64_t cnt[YAK_N_COUNTS], hist[YAK_N_COUNTS];
int c, i, kmer;
yak_qstat_t qs;
double completeness;
yak_copt_init(&opt);
yak_qopt_init(&qopt);
opt.pre = YAK_COUNTER_BITS;
while ((c = ketopt(&o, argc, argv, 1, "k:K:t:", 0)) >= 0) {
if (c == 'k') opt.k = atoi(o.arg);
else if (c == 'K') opt.chunk_size = atoi(o.arg);
else if (c == 't') opt.n_thread = atoi(o.arg);
}
qopt.n_threads = opt.n_thread;
if (argc - o.ind < 4) {
fprintf(stderr, "Usage: pstools eval [options] <hap1.fa> <hap2.fa> <hic.R1.fastq.gz> <hic.R2.fastq.gz>\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -k INT k-mer size [%d]\n", opt.k);
fprintf(stderr, " -t INT number of worker threads [%d]\n", opt.n_thread);
fprintf(stderr, " -K INT chunk size [100m]\n");
return 1;
}
if (opt.k >= 64) {
fprintf(stderr, "ERROR: -k must be smaller than 64\n");
return 1;
} else if (opt.k >= 32) {
fprintf(stderr, "WARNING: counts are inexact if -k is greater than 31\n");
}
char* hap1_file = argv[o.ind];
char* hap2_file = argv[o.ind+1];
char* hic1_file = argv[o.ind+2];
char* hic2_file = argv[o.ind+3];
string minimap2_cmd = string("minimap2 -ax asm5 -t");
minimap2_cmd += to_string(opt.n_thread) + string(" -o temp.sam ");
minimap2_cmd += string(hap1_file) + " " + string(hap2_file);
// ret = system(minimap2_cmd.c_str());
map<string, map<string, uint32_t>> contig_name_map;
map<string, map<string, uint32_t>> contig_name_len;
map<string, map<string, uint32_t>> contig_name_mq;
map<string, uint32_t> contig_name_max_mq;
map<string, uint32_t> contig_name_max_len;
ifstream infile("temp.sam");
string hap2_name, hap1_name, dump;
uint32_t mapq, mlen;
string line;
while (std::getline(infile, line)) {
std::istringstream is(line);
is >> hap1_name;
if(hap1_name[0]=='@') continue;
is >> dump >> hap2_name;
is >> dump >> mapq;
is >> dump >> dump >> dump >> dump >> dump;
mlen = dump.size();
if(mlen == 1 && dump[0]=='='){
mlen = 0xFFFFFFFF;
}
// cout << hap1_name << " " << hap2_name << " " << mapq << " " << mlen << endl;
if(strcmp(hap1_name.c_str() ,"*") !=0 && (strcmp(hap2_name.c_str() ,"*") !=0)){
if(contig_name_map.find(hap2_name) == contig_name_map.end()){
contig_name_map[hap2_name] = map<string, uint32_t>();
contig_name_len[hap2_name] = map<string, uint32_t>();
contig_name_mq[hap2_name] = map<string, uint32_t>();
contig_name_max_mq[hap2_name] = 0;
contig_name_max_len[hap2_name] = 0;
}
if(contig_name_len[hap2_name].find(hap1_name)==contig_name_len[hap2_name].end()){
contig_name_len[hap2_name][hap1_name] = 0;
}
if(contig_name_mq[hap2_name].find(hap1_name)==contig_name_mq[hap2_name].end()){
contig_name_mq[hap2_name][hap1_name] = 0;
}
contig_name_max_mq[hap2_name] = max(mapq, contig_name_max_mq[hap2_name]);
contig_name_max_len[hap2_name] = max(mlen, contig_name_max_len[hap2_name]);
contig_name_len[hap2_name][hap1_name] = max(mlen, contig_name_len[hap2_name][hap1_name]);
contig_name_mq[hap2_name][hap1_name] = max(mapq, contig_name_mq[hap2_name][hap1_name]);
contig_name_map[hap2_name][hap1_name]++;
}
}
map<string,string> contig_map;
set<string> matched_contigs;
for(auto i : contig_name_map){
uint32_t mq_thred = (contig_name_max_mq[i.first] == 60 ? 50 : 0);
uint32_t max_count = 0;
string max_matched;
for(auto j : i.second){
if(contig_name_mq[i.first][j.first] > mq_thred && contig_name_len[i.first][j.first] > contig_name_max_len[i.first]*0.8 && max_count < j.second && matched_contigs.find(j.first)==matched_contigs.end()){
max_count = j.second;
max_matched = j.first;
}
}
if(max_count>0){
contig_map[i.first] = max_matched;
matched_contigs.insert(max_matched);
}
}
for(auto i : contig_map){
cout << i.first << " to " << i.second << endl;
}
cout << contig_map.size() << endl;
// system("rm temp.sam");
// hic_h = yak_count_create_new(hic1_file, &opt, 0);
// hic_h = yak_count_create_new(hic2_file, &opt, hic_h);
// kmer = hic_h->k;
// yak_ch_hist(hic_h, hist, opt.n_thread);
// yak_qv(&qopt, argv[o.ind+1], hic_h, cnt);
// yak_qv_solve(hist, cnt, kmer, qopt.fpr, &qs);
// yak_ch_destroy(hic_h);
// haplo_h = yak_count_create_new(hap1_file, &opt, 0);
// haplo_h = yak_count_create_new(hap2_file, &opt, haplo_h);
// completeness = main_completeness(haplo_h, opt.n_thread, hic1_file, hic2_file);
// yak_ch_destroy(haplo_h);
main_switch_error(opt, hic1_file, hic2_file, hap1_file, hap2_file, contig_map);
// // printf("CC\tCT kmer_occurrence short_read_kmer_count raw_input_kmer_count adjusted_input_kmer_count\n");
// printf("CC\tFR fpr_lower_bound fpr_upper_bound\n");
// printf("CC\tER total_input_kmers adjusted_error_kmers\n");
// printf("CC\tCV coverage\n");
// printf("CC\tQV raw_quality_value adjusted_quality_value\n");
// printf("CC\n");
// // for (i = (1<<YAK_COUNTER_BITS) - 1; i >= 0; --i)
// // printf("CT\t%d\t%ld\t%ld\t%.3f\n", i, (long)hist[i], (long)cnt[i], qs.adj_cnt[i]);
// printf("FR\t%.3g\t%.3g\n", qs.fpr_lower, qs.fpr_upper);
// printf("ER\t%ld\t%.3f\n", (long)qs.tot, qs.err);
// printf("CV\t%.3f\n", qs.cov);
// printf("QV\t%.3f\t%.3f\n", qs.qv_raw, qs.qv);
// printf("QV \t%.3f\n", qs.qv_raw);
// printf("Completeness\t%.4f\n",completeness);
return ret;
}
// int main_identity_check(int argc, char *argv[]){
// stringstream minimap2_cmd;
// int c;
// yak_copt_t opt;
// ketopt_t o = KETOPT_INIT;
// yak_copt_init(&opt);
// while ((c = ketopt(&o, argc, argv, 1, "t:", 0)) >= 0) {
// if (c == 't') opt.n_thread = atoi(o.arg);
// }
// if (argc - o.ind < 1) {
// fprintf(stderr, "Usage: pstools identity_check [options] [in.fa]\n");
// fprintf(stderr, "Options:\n");
// fprintf(stderr, " -t INT number of worker threads [%d]\n", opt.n_thread);
// return 1;
// }
// minimap2_cmd << "minimap2 -I40G -x asm20 -Y -a --eqx -t" << opt.n_thread << " " << argv[o.ind] << " "<< argv[o.ind];
// minimap2_cmd << " | samtools view -F 4 -u - | samtools sort - > haplotype_identity.bam";
// int ret = system(minimap2_cmd.str().c_str());
// ret = system("python ./samIdentity.py --header haplotype_identity.bam | awk '$1 != $5' > output.tbl");
// return ret;
// }
int main_count(int argc, char *argv[])
{
yak_ch_t *h;
int c;
char *fn_out = 0;
yak_copt_t opt;
ketopt_t o = KETOPT_INIT;
yak_copt_init(&opt);
while ((c = ketopt(&o, argc, argv, 1, "k:p:K:t:b:H:o:", 0)) >= 0) {
if (c == 'k') opt.k = atoi(o.arg);
else if (c == 'p') opt.pre = atoi(o.arg);
else if (c == 'K') opt.chunk_size = atoi(o.arg);
else if (c == 't') opt.n_thread = atoi(o.arg);
else if (c == 'b') opt.bf_shift = atoi(o.arg);
else if (c == 'H') opt.bf_n_hash = mm_parse_num(o.arg);
else if (c == 'o') fn_out = o.arg;
}
if (argc - o.ind < 1) {
fprintf(stderr, "Usage: pstools count [options] <in.fa> [in.fa]\n");
fprintf(stderr, "Options:\n");
fprintf(stderr, " -k INT k-mer size [%d]\n", opt.k);
fprintf(stderr, " -p INT prefix length [%d]\n", opt.pre);
fprintf(stderr, " -b INT set Bloom filter size to 2**INT bits; 0 to disable [%d]\n", opt.bf_shift);
fprintf(stderr, " -H INT use INT hash functions for Bloom filter [%d]\n", opt.bf_n_hash);
fprintf(stderr, " -t INT number of worker threads [%d]\n", opt.n_thread);
fprintf(stderr, " -o FILE dump the count hash table to FILE []\n");
fprintf(stderr, " -K INT chunk size [100m]\n");
fprintf(stderr, "Note: -b37 is recommended for human reads\n");
return 1;
}
if (opt.pre < YAK_COUNTER_BITS) {
fprintf(stderr, "ERROR: -p should be at least %d\n", YAK_COUNTER_BITS);
return 1;
}
if (opt.k >= 64) {
fprintf(stderr, "ERROR: -k must be smaller than 64\n");
return 1;
} else if (opt.k >= 32) {
fprintf(stderr, "WARNING: counts are inexact if -k is greater than 31\n");
}
h = yak_count(argv[o.ind], &opt, 0);
if (opt.bf_shift > 0) {
yak_ch_destroy_bf(h);
yak_ch_clear(h, opt.n_thread);
h = yak_count(argc - o.ind >= 2? argv[o.ind+1] : argv[o.ind], &opt, h);
yak_ch_shrink(h, 2, YAK_MAX_COUNT, opt.n_thread);
fprintf(stderr, "[M::%s] %ld distinct k-mers after shrinking\n", __func__, (long)h->tot);
}
if (fn_out) yak_ch_dump(h, fn_out);
yak_ch_destroy(h);
return 0;
}
int main(int argc, char *argv[])
{
extern double yak_realtime(void);
extern double yak_cputime(void);
extern void yak_reset_realtime(void);
double t_start;
int ret = 0, i;
if (argc == 1) {
fprintf(stderr, "Usage: pstools <command> <arguments> <inputs>\n");
fprintf(stderr, "Commands:\n");
fprintf(stderr, " bubble_chain returns bubble chains from hifi graph using ONT data\n");
fprintf(stderr, " intersect extract corresponding paf records for sub graph\n");
fprintf(stderr, " resolve_repeat use ONT data to resolve repeats in hifi graph\n");
fprintf(stderr, " resolve_haplotypes use hic data to resolve haplotypes\n");
fprintf(stderr, " hic_mapping map hic data to sequences in the graph\n");
fprintf(stderr, " count count k-mers\n");
// fprintf(stderr, " identity_check generate identity table for contigs\n");
fprintf(stderr, " eval evaluate the prediction\n");
fprintf(stderr, " version print version number\n");
return 1;
}
yak_reset_realtime();
t_start = yak_realtime();
if (strcmp(argv[1], "intersect") == 0) ret = main_intersect(argc-1, argv+1);
else if (strcmp(argv[1], "bubble_chain") == 0) ret = main_bubble_chain(argc-1, argv+1);
else if (strcmp(argv[1], "resolve_repeat") == 0) ret = main_resolve_repeat(argc-1, argv+1);
else if (strcmp(argv[1], "resolve_haplotypes") == 0) ret = main_resolve_haplotypes(argc-1, argv+1);
else if (strcmp(argv[1], "obtain_graph_sequence") == 0) ret = main_obtain_graph_sequence(argc-1, argv+1);
else if (strcmp(argv[1], "hic_mapping") == 0) ret = main_hic_mapping(argc-1, argv+1);
else if (strcmp(argv[1], "eval") == 0) ret = main_eval(argc-1, argv+1);
else if (strcmp(argv[1], "count") == 0) ret = main_count(argc-1, argv+1);
// else if (strcmp(argv[1], "identity_check") == 0) ret = main_identity_check(argc-1, argv+1);
else if (strcmp(argv[1], "version") == 0) {
printf("gfa.h: %s\nps: %s\n", PSTOOLS_VERSION, PSTOOLS_VERSION);
return 0;
} else {
fprintf(stderr, "[E::%s] unknown command\n", __func__);
return 1;
}
if (ret == 0) {
fprintf(stderr, "[M::%s] Version: %s\n", __func__, PSTOOLS_VERSION);
fprintf(stderr, "[M::%s] CMD:", __func__);
for (i = 0; i < argc; ++i)
fprintf(stderr, " %s", argv[i]);
fprintf(stderr, "\n[M::%s] Real time: %.3f sec; CPU: %.3f sec\n", __func__, yak_realtime() - t_start, yak_cputime());
}
return ret;
}