-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathglm_corrmap.m
585 lines (521 loc) · 20 KB
/
glm_corrmap.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
function glm_corrmap(filttype,pix,varargin)
%
%
% Be in directory of cell,
% or input cell dir as varargin
%
%
%%%% CHANGE THIS TO SOMETHING ELSE
% figdir = '/Volumes/User/huimin/Desktop/';
figdir = '/Volumes/Hippocampus/Data/picasso-misc/AnalysisHM/Current Analysis/Figures/';
if nargin > 2
cd(varargin{1});
end
cwd = pwd;
objdir = [cwd '/' filttype '/' num2str(pix) 'px/'];
%%% not part of placebyspatialview.m
cd ../../..
pv = load([num2str(pix) 'vmpv.mat']);
pv = pv.pv;
%%% over
cd(objdir);
% Load vmpc object
pc = load('vmpc.mat');
pc = pc.vmp.data;
% % Load vmsv object
% sv = load('vmsv.mat');
% sv = sv.vms.data;
cd(cwd);
% Load spike train
spiketrain = load('spiketrain.mat');
spiketrain = spiketrain.timestamps ./ 1000; % in seconds
% Combine place and view info with spikes and make rate maps
pvT = pv.data.sessionTimeC;
pvT(:,4) = [diff(pvT(:,1)); 0];
binned = histcounts(spiketrain, pvT(:,1))';
pvT(:,5) = [binned; 0];
% Filter out segments
switch filttype
case 'FiltAll'
pvT(~get(pv,'SpeedLimit',pc.Args.ThresVel),:) = []; % Velocity < threshold
pvT(~ismember(pvT(:,2),pv.data.place_good_bins),:) = []; % Num place obs < MinObsPlace
pvT(~ismember(pvT(:,3),pv.data.view_good_bins),:) = []; % Num view obs < MinObsView
case 'FiltVel'
pvT(~get(pv,'SpeedLimit',pc.Args.ThresVel),:) = []; % Velocity < threshold
case 'FiltObs'
pvT(~ismember(pvT(:,2),pv.data.place_good_bins),:) = []; % Num place obs < MinObsPlace
pvT(~ismember(pvT(:,3),pv.data.view_good_bins),:) = []; % Num view obs < MinObsView
end
pvT(pvT(:,2)==0,:) = []; % ITI
% Create base for backfilling
% pvTfill = pvT;
view_durations = NaN(5122,1600);
view_spikes = NaN(5122,1600);
place_durations = NaN(1,1600);
place_spikes = NaN(1,1600);
for i = 1:1600
inds = pvT(:,2)==i;
subsample = [pvT(inds, [3 4 5])];
if ~isempty(subsample)
disp(i);
end
if ~isempty(subsample)
% Get spikes and duration for place only
place_durations(1,i) = sum(subsample(:,2));
place_spikes(1,i) = sum(subsample(:,3));
% back-filling spikes for view
subsample(subsample(:,3)==0,3) = nan;
% subsample(:,4) = circshift(subsample(:,2)~=0 ,-1);
subsample(:,4) = circshift(subsample(:,2)~=0 ,0);
subsample(isnan(subsample(:,3)) & subsample(:,4), 3) = 0;
subsample(:,4) = [];
subsample(:,3) = fillmissing(subsample(:,3), 'next');
% back-filling time for view
subsample(subsample(:,2)==0,2) = nan;
% subsample(:,2) = fillmissing(subsample(:,2), 'previous');
subsample(:,2) = fillmissing(subsample(:,2), 'next');
% Put backfill into sessionTimeC array
% pvTfill(inds,[3 4 5]) = subsample;
% padding with 5122 bin
if subsample(end,1) ~= 5122
subsample = [subsample; [5122 NaN NaN]];
end
% subsample = [subsample; [5122 0 0]];
% remove bad view spots
subsample(isnan(subsample(:,1)),:) = [];
% sum durations
view_durations(:,i) = accumarray(subsample(:,1), subsample(:,2),[],[],NaN);
% sum spikes
view_spikes(:,i) = accumarray(subsample(:,1), subsample(:,3),[],[],NaN);
end
end
p_array_orig = place_spikes./place_durations;
sv_array_orig = nansum(view_spikes,2)./nansum(view_durations,2);
view_spikes_temp = view_spikes;
view_spikes_temp(isnan(view_spikes)) = 0; % to prevent error on factorial
% Maximum-likelihood maps
startorig = 1;
if startorig
% Start with Original maps
p_array = p_array_orig;
sv_array = sv_array_orig;
else
% Start with uniform array
p_array = ones(1,size(place_durations,2));
p_array(isnan(p_array_orig)) = nan;
sv_array = ones(size(view_durations,1),1);
sv_array(isnan(sv_array_orig)) = nan;
end
% Starting llh
llh = sum( nansum(view_spikes.*log(p_array.*view_durations.*sv_array)) - nansum(p_array.*view_durations.*sv_array) - nansum(log(factorial(view_spikes_temp))) );
llh_vec = llh;
p_array_set = [p_array];
sv_array_set = [sv_array];
p_spk_set = {view_spikes};
sv_spk_set = {view_spikes};
mlm = true;
count = 0;
while mlm == true
% spk_adj = nan(size(view_spikes,1),size(view_spikes,2));
% for ii = 1:size(view_spikes,2)
% for jj = 1:size(view_spikes,1)
% if ~isnan(view_spikes(jj,ii))
% if isnan(sv_array(jj))
% spk_adj(jj,ii) = nan;
% elseif sv_array(jj) == 0
% spk_adj(jj,ii) = 0;
% else
% spk_adj(jj,ii) = view_spikes(jj,ii)/sv_array(jj);
% end
% end
% end
% end
% multfac = nansum(nansum(view_spikes)) / nansum(nansum(spk_adj));
% spk_adj = multfac*spk_adj;
% p_array = nansum(spk_adj,1)./nansum(view_durations,1);
% p_array_set = [p_array_set; p_array];
% p_spk_set{end+1} = spk_adj;
dur_adj = nan(size(view_durations,1),size(view_durations,2));
for ii = 1:size(view_durations,2)
for jj = 1:size(view_durations,1)
if ~isnan(view_durations(jj,ii))
if isnan(sv_array(jj))
dur_adj(jj,ii) = 0;
elseif sv_array(jj) == 0
dur_adj(jj,ii) = view_durations(jj,ii);
else
dur_adj(jj,ii) = view_durations(jj,ii)*sv_array(jj);
end
end
end
end
p_array = nansum(view_spikes,1)./nansum(dur_adj,1);
spk = p_array.*nansum(view_durations,1);
totspk = nansum(spk);
multfac = nansum(nansum(view_spikes)) / totspk;
p_array = multfac * p_array;
p_array_set = [p_array_set; p_array];
% spk_adj = nan(size(view_spikes,1),size(view_spikes,2));
% for jj = 1:size(view_spikes,1)
% for ii = 1:size(view_spikes,2)
% if ~isnan(view_spikes(jj,ii))
% if isnan(p_array(ii))
% spk_adj(jj,ii) = nan;
% elseif p_array(ii) == 0
% spk_adj(jj,ii) = 0;
% else
% spk_adj(jj,ii) = view_spikes(jj,ii)/p_array(ii);
% end
% end
% end
% end
% multfac = nansum(nansum(view_spikes)) / nansum(nansum(spk_adj));
% spk_adj = multfac*spk_adj;
% sv_array = nansum(spk_adj,2)./nansum(view_durations,2);
% sv_array_set = [sv_array_set sv_array];
% sv_spk_set{end+1} = spk_adj;
dur_adj = nan(size(view_durations,1),size(view_durations,2));
for jj = 1:size(view_durations,1)
for ii = 1:size(view_durations,2)
if ~isnan(view_durations(jj,ii))
if isnan(p_array(ii))
dur_adj(jj,ii) = 0;
elseif p_array(ii) == 0
dur_adj(jj,ii) = view_durations(jj,ii);
else
dur_adj(jj,ii) = view_durations(jj,ii)*p_array(ii);
end
end
end
end
sv_array = nansum(view_spikes,2)./nansum(dur_adj,2);
spk = sv_array.*nansum(view_durations,2);
totspk = nansum(spk);
multfac = nansum(nansum(view_spikes)) / totspk;
sv_array = multfac * sv_array;
sv_array_set = [sv_array_set sv_array];
% prev_llh = llh;
llh = sum( nansum(view_spikes.*log(p_array.*view_durations.*sv_array)) - nansum(p_array.*view_durations.*sv_array) - nansum(log(factorial(view_spikes_temp))) );
llh_vec(end+1,1) = llh;
disp([num2str(size(llh_vec,1)) ':' num2str(llh)]);
if startorig
pick = find(llh_vec == max(llh_vec));
else
pick = find(llh_vec == max(llh_vec(2:end)));
end
if size(pick,1) > 1
disp('undifferentiable llh');
pick = pick(1);
picklabel = ['undiff' num2str(pick)];
break;
else
picklabel = num2str(pick);
end
if pick < size(llh_vec,1) && size(llh_vec,1) - pick > 1
disp('stop');
count = count + 1;
end
if count > 10
break;
end
if isinf(llh)
mlm = false;
disp('stop');
end
end
corr_p_array = p_array_set(pick,:);
corr_sv_array = sv_array_set(:,pick);
% corr_spk = sv_spk_set{pick};
% corr_sv_spk = sv_spk_set{pick};
disp(pick);
%%% temporary %%%
% Collect date, session, array, channel, cell
s = regexp(cwd,'session');
identifiers = [str2double(cwd(s-9:s-2)) str2double(cwd(s+7:s+8)) ...
str2double(cwd(s+15:s+16)) str2double(cwd(s+25:s+27)) str2double(cwd(s+33:s+34))];
ID = [num2str(identifiers(1,1)) 'ch' num2str(identifiers(1,4)) 'c' num2str(identifiers(1,5))];
figdir = [figdir filttype '/' num2str(pix) 'px/Corrmaps/' ID 'pick' picklabel '/'];
mkdir(figdir);
cd(figdir)
% mkdir(ID)
% cd('corrmaps')
%%%%%%%%%%%%%%%
save(['llh_history' '.mat'], 'llh_vec')
% Original place map
h = figure(1);
set(h,'Units','normalized','Position',[0 0 1 1]);
ax = subplot(1,2,1);
% h.Name = [ID 'vmpvRawPlaceMap'];
map = p_array_orig;
plotmap(map,'place');
maxC = nanmax(map);
ax.Title.String = ['vmpvRawPlaceMap'];
set(ax,'CLim',[0 maxC],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
'XColor','none','YColor','none','ZColor','none',...
'FontSize',14,'GridLineStyle','none','Color','none');
clear map;
% Corrected place map
ax = subplot(1,2,2);
map = corr_p_array;
plotmap(map,'place');
ax.Title.String = ['CorrPlaceMap' ' Pick ' picklabel ', MaxRate ' num2str(nanmax(map)) 'Hz'];
set(ax,'CLim',[0 maxC],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
'XColor','none','YColor','none','ZColor','none',...
'FontSize',14,'GridLineStyle','none','Color','none');
clear map;
saveas(h,['placemap.fig']);
saveas(h,['placemap.png']);
close(h);
% Original view map
h = figure(2);
ax = subplot(1,2,1);
map = sv_array_orig;
plotmap(map,'spatialview');
maxC = nanmax(map);
ax.Title.String = ['vmpvRawViewMap'];
set(ax,'CLim',[0 nanmax(map)],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
'XColor','none','YColor','none','ZColor','none',...
'FontSize',14,'GridLineStyle','none','Color','none');
clear map;
% Corrected view map
ax = subplot(1,2,2);
set(h,'Units','normalized','Position',[0 0 1 1]);
map = corr_sv_array;
plotmap(map,'spatialview');
ax.Title.String = ['CorrViewMap' ' Pick ' picklabel ', MaxRate ' num2str(nanmax(map)) 'Hz'];
set(ax,'CLim',[0 maxC],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
'XColor','none','YColor','none','ZColor','none',...
'FontSize',14,'GridLineStyle','none','Color','none');
clear map;
saveas(h,['viewmap.fig']);
saveas(h,['viewmap.png']);
close(h);
% LLH curve - short
h = figure(3);
if pick > 5
start = pick - 5;
else
start = 1;
end
line(start:size(llh_vec,1), llh_vec(start:end));
saveas(h,['llh_short.fig']);
saveas(h,['llh_short.png']);
close(h);
% LLH curve - full
h = figure(4);
line(1:size(llh_vec,1), llh_vec(1:end));
saveas(h,['llh_full.fig']);
saveas(h,['llh_full.png']);
close(h);
% p_array(place_durations == 0) = NaN;
% sv_array(nansum(view_durations,2) == 0) = NaN;
% total_place_spikes = nansum(place_spikes);
% total_view_spikes = nansum(nansum(view_spikes));
% p_array(isnan(place_durations)) = NaN;
% sv_array(nansum(view_durations,2) == 0) = NaN;
% total_place_spikes = nansum(place_spikes);
% total_view_spikes = nansum(nansum(view_spikes));
% h = figure(11);
% ax = gca;
% % h.Name = [ID 'vmpvRawPlaceMap'];
% set(h,'Units','normalized','Position',[0 0 1 1]);
% % emptyplacegrids = all(isnan(full_rate),1);
% % rawplacemap1 = nansum(full_rate,1);
% % rawplacemap1(1,emptyplacegrids) = NaN;
% rawplacemap1 = place_spikes./place_durations;
% % rawplacemap1(place_durations == 0) = NaN;
% plotmap(rawplacemap1,'place');
% ax.Title.String = ['vmpvRawPlaceMap'];
% set(ax,'CLim',[0 max(rawplacemap1)],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
% 'XColor','none','YColor','none','ZColor','none',...
% 'FontSize',14,'GridLineStyle','none','Color','none');
% % saveas(h,['vmpvrawplacemap.fig']);
% % saveas(h,['vmpvrawplacemap.png']);
% % close(h)
%
% h = figure(14);
% mlmplacefitmap = nansum(p_array.*view_durations.*sv_array,1) ./ nansum(view_durations,1);
% mlmplace_ssres = nansum((rawplacemap1 - mlmplacefitmap).^2);
% mlmplacerawavg = nanmean(rawplacemap1);
% mlmplace_sstot = nansum((rawplacemap1 - mlmplacerawavg).^2);
% mlmplace_goodness = 1 - (mlmplace_ssres / mlmplace_sstot);
% ax = gca;
% %h.Name = [ID 'MLMPlaceMap'];
% set(h,'Units','normalized','Position',[0 0 1 1]);
% [mlmplacefitmapG,~] = plotmap(mlmplacefitmap,'place');
% % [smoothplacemapG,placemapGdummy] = plotplacemap(smoothplacemap); % Do not use grid output as input for another plot as it will turn out rotated 90deg CCW
% ax.Title.String = ['MLMPlaceFitMap, Goodness of Fit R-squared: ' num2str(mlmplace_goodness,10)];
% set(ax,'CLim',[0 max(rawplacemap1)],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
% 'XColor','none','YColor','none','ZColor','none',...
% 'FontSize',14,'GridLineStyle','none','Color','none');
% saveas(h,['mlmfitplacemap' num2str(title_suffix) '.fig']);
% saveas(h,['mlmfitplacemap' num2str(title_suffix) '.png']);
% close(h)
%
% h = figure(15);
% ax = gca;
% %h.Name = [ID 'MLMPlaceMap'];
% set(h,'Units','normalized','Position',[0 0 1 1]);
% mlmplacemap = nansum(p_array.*place_durations); % total spikes before scaling
% mlmplacemap = p_array * (total_place_spikes/mlmplacemap);
% [mlmplacemapG,~] = plotmap(mlmplacemap,'place');
% mlmplacemap_exceed = mlmplacemap(mlmplacemap > max(rawplacemap1));
% % [smoothplacemapG,placemapGdummy] = plotplacemap(smoothplacemap); % Do not use grid output as input for another plot as it will turn out rotated 90deg CCW
% ax.Title.String = {'MLMPlaceMap', ['values exceeding CLim: ' mat2str(mlmplacemap_exceed)]};
% set(ax,'CLim',[0 max(rawplacemap1)],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
% 'XColor','none','YColor','none','ZColor','none',...
% 'FontSize',14,'GridLineStyle','none','Color','none');
% % patchenvbounds('place');
% % if savefig
% % savefigure(h,h.Name,figdir);
% % end
% saveas(h,['mlmplacemap' num2str(title_suffix) '.fig']);
% saveas(h,['mlmplacemap' num2str(title_suffix) '.png']);
% close(h)
%
% h = figure(21);
% ax = gca;
% % h.Name = [ID 'vmpvRawViewMap'];
% set(h,'Units','normalized','Position',[0 0 1 1]);
% spikes = nansum(view_spikes,2);
% durations = nansum(view_durations,2);
% rawviewmap1 = spikes./durations;
% rawviewmap1(durations==0) = nan;
% % rawviewmap1 = emptyinsidepillar(rawviewmap1); % Temporary measure only! Remove data from inside of pillar where it should be empty
% plotmap(rawviewmap1,'spatialview');
% ax.Title.String = ['vmpvRawViewMap'];
% set(ax,'CLim',[0 max(rawviewmap1(3:end))],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
% 'XColor','none','YColor','none','ZColor','none',...
% 'FontSize',14,'GridLineStyle','none','Color','none');
% saveas(h,['vmpvrawviewmap.fig']);
% saveas(h,['vmpvrawviewmap.png']);
% close(h)
%
% h = figure(24);
% mlmviewfitmap = nansum(p_array.*view_durations.*sv_array,2) ./ nansum(view_durations,2);
% mlmview_ssres = nansum((rawviewmap1 - mlmviewfitmap).^2);
% mlmviewrawavg = nanmean(rawviewmap1);
% mlmview_sstot = nansum((rawviewmap1 - mlmviewrawavg).^2);
% mlmview_goodness = 1 - (mlmview_ssres / mlmview_sstot);
% ax = gca;
% %h.Name = [ID 'MLMViewMap'];
% set(h,'Units','normalized','Position',[0 0 1 1]);
% plotmap(mlmviewfitmap,'spatialview');
% ax.Title.String = ['MLMViewFitMap, Goodness of Fit R-squared: ' num2str(mlmview_goodness,10)];
% set(ax,'CLim',[0 max(rawviewmap1(3:end))],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
% 'XColor','none','YColor','none','ZColor','none',...
% 'FontSize',14,'GridLineStyle','none','Color','none');
% % patchenvbounds('spatialview');
% % if savefig
% % savefigure(h,h.Name,figdir);
% % end
% saveas(h,['mlmfitviewmap' num2str(title_suffix) '.fig']);
% saveas(h,['mlmfitviewmap' num2str(title_suffix) '.png']);
% close(h)
%
% h = figure(25);
% ax = gca;
% %h.Name = [ID 'MLMViewMap'];
% set(h,'Units','normalized','Position',[0 0 1 1]);
% %mlmviewmap = nansum(p_array.*view_durations.*sv_array,2) ./ nansum(view_durations,2);
% mlmviewmap = nansum(sv_array.*nansum(view_durations,2)); % total spikes before scaling
% mlmviewmap = sv_array * (total_view_spikes/mlmviewmap);
% plotmap(mlmviewmap,'spatialview');
% mlmviewmap_exceed = mlmviewmap(mlmviewmap > max(rawviewmap1));
% ax.Title.String = {'MLMViewMap', ['values exceeding CLim: ' mat2str(mlmviewmap_exceed)]};
% set(ax,'CLim',[0 max(rawviewmap1(3:end))],'DataAspectRatioMode','manual','DataAspectRatio',[1 1 1],...
% 'XColor','none','YColor','none','ZColor','none',...
% 'FontSize',14,'GridLineStyle','none','Color','none');
% % patchenvbounds('spatialview');
% % if savefig
% % savefigure(h,h.Name,figdir);
% % end
% saveas(h,['mlmviewmap' num2str(title_suffix) '.fig']);
% saveas(h,['mlmviewmap' num2str(title_suffix) '.png']);
% close(h)
end
% Plot rate map
function [mapG,mapGdummy]= plotmap(mapL,objtype)
% Insert floor place map into larger 3D view setting
if strcmp(objtype,'place')
mapLtemp = mapL;
mapL = nan(1,5122);
mapL(3:3+1600-1) = mapLtemp;
mapG = flipud(reshape(mapLtemp, 40, 40)');
mapGdummy = flipud(reshape(1:1600, 40, 40)');
end
mapLdummy = 1:length(mapL);
% Set up surf frame for plotting
floor_x = repmat(0:40, 41, 1);
floor_y = flipud(repmat([0:40]', 1, 41));
floor_z = zeros(41,41);
ceiling_x = floor_x;
ceiling_y = floor_y;
ceiling_z = 40.*ones(41,41);
walls_x = repmat([0.*ones(1,40) 0:39 40.*ones(1,40) 40:-1:0], 9, 1);
walls_y = repmat([0:39 40.*ones(1,40) 40:-1:1 0.*ones(1,41)], 9, 1);
walls_z = repmat([24:-1:16]', 1, 40*4 + 1);
P1_x = repmat([24.*ones(1,8) 24:31 32.*ones(1,8) 32:-1:24], 6, 1);
P1_y = repmat([8:15 16.*ones(1,8) 16:-1:9 8.*ones(1,9)], 6, 1);
PX_z = repmat([21:-1:16]', 1, 8*4 + 1);
P2_x = repmat([8.*ones(1,8) 8:15 16.*ones(1,8) 16:-1:8], 6, 1);
P2_y = P1_y;
P3_x = P1_x;
P3_y = repmat([24:31 32.*ones(1,8) 32:-1:25 24.*ones(1,9)], 6, 1);
P4_x = P2_x;
P4_y = P3_y;
floor = flipud(reshape(mapL(3:3+1600-1), 40, 40)');
floordum = flipud(reshape(mapLdummy(3:3+1600-1), 40, 40)');
% ceiling follows floor mapping, top down view
ceiling = flipud(reshape(mapL(1603:1603+1600-1), 40, 40)');
ceilingdum = flipud(reshape(mapLdummy(1603:1603+1600-1), 40, 40)');
% from top down, slit walls at bottom left corner, open outwards.
% start from row closest to ground, rightwards, then climb rows
walls = flipud(reshape(mapL(3203:3203+1280-1), 40*4, 8)');
wallsdum = flipud(reshape(mapLdummy(3203:3203+1280-1), 40*4, 8)');
% BL - bottom left, and so on, from top view, same slicing as walls
% pillar width 8, height 5
P1_BR = flipud(reshape(mapL(4483:4483+160-1), 8*4, 5)');
P1_BRdum = flipud(reshape(mapLdummy(4483:4483+160-1), 8*4, 5)');
P2_BL = flipud(reshape(mapL(4643:4643+160-1), 8*4, 5)');
P2_BLdum = flipud(reshape(mapLdummy(4643:4643+160-1), 8*4, 5)');
P3_TR = flipud(reshape(mapL(4803:4803+160-1), 8*4, 5)');
P3_TRdum = flipud(reshape(mapLdummy(4803:4803+160-1), 8*4, 5)');
P4_TL = flipud(reshape(mapL(4963:4963+160-1), 8*4, 5)');
P4_TLdum = flipud(reshape(mapLdummy(4963:4963+160-1), 8*4, 5)');
if strcmp(objtype,'spatialview')
mapG = { NaN; NaN; floor; ceiling; walls; P1_BR; P2_BL; P3_TR; P4_TL };
mapGdummy = { NaN; NaN; floordum; ceilingdum; wallsdum; P1_BRdum; P2_BLdum; P3_TRdum; P4_TLdum };
end
% Pad with NaNs for surf plots
P1_BR = [P1_BR; nan(1,size(P1_BR,2))];
P1_BR = [P1_BR nan(size(P1_BR,1),1)];
P2_BL = [P2_BL; nan(1,size(P2_BL,2))];
P2_BL = [P2_BL nan(size(P2_BL,1),1)];
P3_TR = [P3_TR; nan(1,size(P3_TR,2))];
P3_TR = [P3_TR nan(size(P3_TR,1),1)];
P4_TL = [P4_TL; nan(1,size(P4_TL,2))];
P4_TL = [P4_TL nan(size(P4_TL,1),1)];
% Plot floor
surf(floor_x, floor_y, floor_z, floor);
alpha 1; shading flat;
hold on;
% Plot ceiling and walls
surf(ceiling_x, ceiling_y, ceiling_z, ceiling);
alpha 1; shading flat;
surf(walls_x, walls_y, walls_z, walls);
alpha 1; shading flat;
%disp(sum(sum(find(ceiling==0))) + sum(sum(find(floor==0))) + sum(sum(find(P4_TL==0))));
% Plot pillars
surf(P1_x, P1_y, PX_z, P1_BR);
alpha 1; shading flat;
surf(P2_x, P2_y, PX_z, P2_BL);
alpha 1; shading flat;
surf(P3_x, P3_y, PX_z, P3_TR);
alpha 1; shading flat;
surf(P4_x, P4_y, PX_z, P4_TL);
alpha 1; shading flat;
view(-35,20);
colormap jet;
colorbar('Location','EastOutside','FontSize',36);
end