forked from MayankMurali/sqtl_pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
345 lines (299 loc) · 15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#!/usr/bin/env python3
import argparse
from argparse import ArgumentParser, FileType
from collections import Counter, defaultdict
from sys import stderr, exit
import pandas as pd
import csv
import matplotlib.pyplot as plt
#%% Parsing arguments from user
parser = argparse.ArgumentParser(description='Analyze splice junctions and GWAS SNPs')
parser.add_argument('junction_file', help='Path to the Leafcutter sQTL junction file')
parser.add_argument('moloc_snp_file', help='Path to the moloc SNP file')
parser.add_argument('gtf_file', nargs='?', type=FileType('r'), help='input GTF file (use "-" for stdin)')
args = parser.parse_args()
#%% Reads a MOLoc sQTL file and returns a list of dictionaries with the data.
sqtl_list = []
with open(args.moloc_snp_file, 'r') as f:
header = f.readline().strip().split('\t')
for line in f:
data = line.strip().split('\t')
sqtl_dict = {}
for i, value in enumerate(data):
sqtl_dict[header[i]] = value
sqtl_list.append(sqtl_dict)
snp_list = sqtl_list
#%% Reads a LeafCutter sQTL file and returns a list of dictionaries with the data.
with open(args.junction_file, 'r') as f:
header = f.readline().strip().split('\t') # Read and parse the header line
sqtls = [] # Initialize an empty list to store the data
for line in f:
values = line.strip().split('\t')
row_dict = {header[i]: values[i] for i in range(len(header))}
sqtls.append(row_dict)
leafcutter_list = sqtls
#%% Function call for Output 1 task: Retrieves junctions information for a list of SNPs from a LeafCutter file.
# Output: A tuple containing two dictionaries. The first dictionary contains SNP junction information for all SNPs in snp_list.
# The second dictionary contains junction information for SNPs with a p-value < 0.05.
# from IPython import embed; embed()
# Create a dictionary to store the junctions containing each SNP
snp_junctions_tested = {}
return_snp_junctions_tested = {}
junction_set = {}
return_junction_set={}
# Iterate over the SNPs
for snp in snp_list:
snp_coord = snp['best.snp.coloc']
snp_coord = '18:8809447:G:C'
# Dictionary to store the SNP tested junctions
snp_junctions_tested[snp_coord] = []
junction_set[snp_coord] = []
# Iterate over the LeafCutter sQTLs
for sqtl in leafcutter_list:
variant_id = sqtl['variant_id'].replace('chr', '')
if variant_id == snp_coord:
snp_junctions_tested[snp_coord].append({
'phenotype_id': sqtl['phenotype_id'],
'pval_nominal': sqtl['pval_nominal'],
'slope': sqtl['slope']
})
# Extracting SNP-junction set where the SNP is associated with the junction
if float(sqtl['pval_nominal']) < 0.05:
junction_set[snp_coord].append({
'phenotype_id': sqtl['phenotype_id'],
'pval_nominal': sqtl['pval_nominal'],
'slope': sqtl['slope']
})
return_snp_junctions_tested = snp_junctions_tested
return_junction_set = junction_set
## create the intermediate TSV file
with open('A_SNP_junction_set/snp_junctions_tested_only.tsv', 'w', newline='') as f:
writer = csv.writer(f, delimiter='\t')
# write the header row
writer.writerow(['SNP (variant_id)', 'Filtered junctions (phenotype_id)', 'strand', 'pval_nominal', 'slope'])
# initialize a flag for first row
jx_set = []
# iterate through the dictionary and write rows
# TODO: @Will to add sanity checks to this for loop
for snp_coord, junctions_info in snp_junctions_tested.items():
# split the SNP coordinate to get chromosome and position
chrom, pos, ref, alt = snp_coord.split(':')
variant_id = f"{chrom}:{pos}:{ref}:{alt}"
first_row = True
for i, junction_info in enumerate(junctions_info):
phenotype_id = junction_info['phenotype_id']
_, _, _, clu_strand = phenotype_id.split(':')
strand = str(clu_strand.split('_')[2])
pval_nominal = junction_info['pval_nominal']
slope = junction_info['slope']
# write the variant_id only for the first row for a given variant_id
if first_row:
writer.writerow([variant_id, phenotype_id, strand, pval_nominal, slope])
jx_set.append([variant_id, phenotype_id, strand, pval_nominal, slope])
first_row = False
else:
writer.writerow(['', phenotype_id, strand, pval_nominal, slope])
jx_set.append(['', phenotype_id, strand, pval_nominal, slope])
## create the intermediate TSV file
with open('A_SNP_junction_set/junction_set.tsv', 'w', newline='') as f:
writer = csv.writer(f, delimiter='\t')
# write the header row
writer.writerow(['SNP (variant_id)', 'Filtered junctions (phenotype_id)', 'strand', 'pval_nominal', 'slope'])
# initialize a flag for first row
jx_set = []
# iterate through the dictionary and write rows
# TODO: @Will to add sanity checks to this for loop
for snp_coord, junctions_info in junction_set.items():
# split the SNP coordinate to get chromosome and position
chrom, pos, ref, alt = snp_coord.split(':')
variant_id = f"{chrom}:{pos}:{ref}:{alt}"
first_row = True
for i, junction_info in enumerate(junctions_info):
phenotype_id = junction_info['phenotype_id']
_, _, _, clu_strand = phenotype_id.split(':')
strand = str(clu_strand.split('_')[2])
pval_nominal = junction_info['pval_nominal']
slope = junction_info['slope']
# write the variant_id only for the first row for a given variant_id
if first_row:
writer.writerow([variant_id, phenotype_id, strand, pval_nominal, slope])
jx_set.append([variant_id, phenotype_id, strand, pval_nominal, slope])
first_row = False
else:
writer.writerow(['', phenotype_id, strand, pval_nominal, slope])
jx_set.append(['', phenotype_id, strand, pval_nominal, slope])
#%% Function call for Output 2 tasks
# Task 1. Identify splice sites from GTF annotation file (rHISAT code modification)
# Output: ss_gtf (pd.DataFrame): DataFrame containing annotated splice sites.
genes = defaultdict(list)
trans = {}
splicesites = []
# Parse valid exon lines from the GTF file into a dict by transcript_id
for line in args.gtf_file:
line = line.strip()
if not line or line.startswith('#'):
continue
if '#' in line:
line = line.split('#')[0].strip()
try:
chrom, source, feature, left, right, score, \
strand, frame, values = line.split('\t')
except ValueError:
continue
left, right = int(left), int(right)
if feature != 'exon' or left >= right:
continue
values_dict = {}
for attr in values.split(';'):
if attr:
attr, _, val = attr.strip().partition(' ')
values_dict[attr] = val.strip('"')
if 'gene_id' not in values_dict or \
'transcript_id' not in values_dict:
continue
transcript_id = values_dict['transcript_id']
if transcript_id not in trans:
trans[transcript_id] = [chrom, strand, [[left, right]]]
genes[values_dict['gene_id']].append(transcript_id)
else:
trans[transcript_id][2].append([left, right])
# Sort exons and merge where separating introns are <=5 bps
for tran, [chrom, strand, exons] in trans.items():
exons.sort()
tmp_exons = [exons[0]]
for i in range(1, len(exons)):
if exons[i][0] - tmp_exons[-1][1] <= 5:
tmp_exons[-1][1] = exons[i][1]
else:
tmp_exons.append(exons[i])
trans[tran] = [chrom, strand, tmp_exons]
# Calculate and print the unique junctions and associated transcript IDs
#TODO: Add sanity check for junctions/splicesites etc. etc.
ss = []
junctions = {}
for chrom, strand, exons in trans.values():
for i in range(1, len(exons)):
junction = (chrom, exons[i-1][1], exons[i][0], strand)
transcript_id = [k for k, v in trans.items() if v == [chrom, strand, exons]][0]
junctions.setdefault(junction, set()).add(transcript_id)
junctions = sorted(junctions.items())
# Write each junction to the TSV file
for junction, transcript_ids in junctions:
chrom, left, right, strand = junction
# Coverting to 0-based coordinates
left, right = left -1, right -1
jx_coord = str(left) + '_' + str(right)
if strand == '-':
donor2 = str(chrom) + '_' + str(left-2)
donor1 = str(chrom) + '_' + str(left-1)
acceptor1 = str(chrom) + '_' + str(right+1)
acceptor2 = str(chrom) + '_' + str(right+2)
else:
donor1 = str(chrom) + '_' + str(left+1)
donor2 = str(chrom) + '_' + str(left+2)
acceptor1 = str(chrom) + '_' + str(right-2)
acceptor2 = str(chrom) + '_' + str(right+1)
ss.append([jx_coord, donor2, strand, 'donor2', ','.join(transcript_ids)])
ss.append([None, donor1, strand, 'donor1', None])
ss.append([None, acceptor1, strand, 'acceptor1', None])
ss.append([None, acceptor2, strand, 'acceptor2', None])
# Create a dataframe from the splice sites list
ss_gtf = pd.DataFrame(ss, columns=['junction_coordinate', 'splicesite_coord', 'strand', 'splicesite_category', 'matched_transcripts'])
# Write the annotated splice sites to a TSV file
ss_gtf.to_csv(f'B_SNP_donor_acceptor_set/splice_sites_gtf.tsv', sep='\t', index=False))
#%% 2. Extracts splice site information from a list of dictionaries containing sQTL data from LeafCutter.
# Output: ss_lc (pd.DataFrame): DataFrame containing annotated splice sites.
# Create an empty list to store splice site information
splice_sites = []
# Iterate over each row in the sqtl list
for row_dict in sqtl_list:
phenotype_id = row_dict['phenotype_id']
tss_distance = row_dict['tss_distance']
chrom, acceptor, donor, clu_strand = phenotype_id.split(':')
acceptor, donor = int(acceptor), int(donor)
#TODO: Verify if coloc SNPs coords are 0-based or 1-based
acceptor, donor = acceptor +1, donor +1
jx_coord = str(acceptor) + '_' + str(donor)
cluster = clu_strand.split('_')[1]
strand = clu_strand.split('_')[2]
if strand == '-':
donor2 = 'chr' + str(chrom) + '_' + str(acceptor-2)
donor1 = 'chr' + str(chrom) + '_' + str(acceptor-1)
acceptor1 = 'chr' + str(chrom) + '_' + str(donor+1)
acceptor2 = 'chr' + str(chrom) + '_' + str(donor+2)
else:
donor1 = 'chr' + str(chrom) + '_' + str(acceptor+1)
donor2 = 'chr' + str(chrom) + '_' + str(acceptor+2)
acceptor1 = 'chr' + str(chrom) + '_' + str(donor-2)
acceptor2 = 'chr' + str(chrom) + '_' + str(donor-1)
splice_sites.append([phenotype_id, jx_coord, donor2, strand, 'donor2'])
splice_sites.append([None, None, donor1, strand, 'donor1'])
splice_sites.append([None, None, acceptor1, strand, 'acceptor1'])
splice_sites.append([None, None, acceptor2, strand, 'acceptor2'])
# Create a dataframe from the splice sites list
ss_lc = pd.DataFrame(splice_sites, columns=['phenotype_id', 'junction_coordinate', 'splicesite_coord', 'strand', 'splicesite_category'])
# Write the annotated splice sites to a TSV file
ss_lc.to_csv(f'B_SNP_donor_acceptor_set/splice_sites_lc.tsv', sep='\t', index=False)
#%% 3. Extracts splice site information from a list of dictionaries containing sQTL data from LeafCutter and GTF
# that are disrupted by the SNP.
# Output: snp_disrupts_ss (list): List of dictionaries containing sQTL data from LeafCutter
# Iterate over each row in the sqtl list
snp_disrupts_ss = []
for snp in snp_list:
snp_coord = snp['best.snp.coloc'].split(":")[1]
# For mock data simulation
snp_coord = 8809447
# Check if the coloc SNPs disrupt the splice sites annotated from LeafCutter sQTL
for ss in ss_lc.itertuples():
ss_coord = ss.splicesite_coord.split("_")[1]
if int(ss_coord) == int(snp_coord):
snp_disrupts_ss.append([snp['best.snp.coloc'], snp['phenotype'], 'LeafCutter', 'yes', ss.splicesite_coord, ss.splicesite_category, ''])
else:
snp_disrupts_ss.append([snp['best.snp.coloc'], snp['phenotype'], 'LeafCutter', '', ss.splicesite_coord, ss.splicesite_category, ''])
# Check if the coloc SNPs disrupt the splice sites annotated from GTF
for ss in ss_gtf.itertuples():
ss_coord = ss.splicesite_coord.split("_")[1]
if int(ss_coord) == int(snp_coord):
snp_disrupts_ss.append([snp['best.snp.coloc'], snp['phenotype'], 'GTF', 'yes', ss.splicesite_coord, ss.splicesite_category, ss.matched_transcripts])
else:
snp_disrupts_ss.append([snp['best.snp.coloc'], snp['phenotype'], 'GTF', '', ss.splicesite_coord, ss.splicesite_category, ss.matched_transcripts])
# Create a dataframe from the splice sites list
df = pd.DataFrame(snp_disrupts_ss, columns=['SNP(variant_id)', 'Filtered junctions(phenotype_id)', 'source', 'disrupts splice site', 'splicesite_coord', 'splicesite_category', 'matched_transcripts'])
# Write the annotated splice sites to a TSV file
df.to_csv(f'B_SNP_donor_acceptor_set/snp_disrupts_splice_sites.tsv', sep='\t', index=False))
#%% Function call for Output 3 task
output_file = 'output.tsv'
jx_items = set(item['phenotype_id'] for sublist in jx_set.values() for item in sublist)
snp_items = set(snp_ss[i][1] for i in range(0, len(snp_ss), 4))
overlap_items = jx_items.intersection(snp_items)
# TODO: @Will- Write all attributes to the table + Make the table more readable.
table_rows = []
for key, value in jx_set.items():
if any(item['phenotype_id'] in overlap_items for item in value):
snp_matches = []
for i in range(0, len(snp_ss), 4):
if (snp_ss[i][1] in overlap_items and key == snp_ss[i][0]):
snp_matches.append({
'splicesite_coord': snp_ss[i+1],
'splicesite_category': snp_ss[i+2],
'matched_transcripts': snp_ss[i+3] if snp_ss[i+3] is not None else ''
})
for jx in value:
if jx['phenotype_id'] in overlap_items:
for snp_match in snp_matches:
row = {
'SNP(variant_id)': key,
'Filtered junctions(phenotype_id)': jx['phenotype_id'],
'disrupts splice site': '',
'splicesite_coord': snp_match['splicesite_coord'],
'splicesite_category': snp_match['splicesite_category'],
'matched_transcripts': snp_match['matched_transcripts']
}
table_rows.append(row)
# Write the table to TSV file
with open(output_file, 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=['SNP(variant_id)', 'Filtered junctions(phenotype_id)', 'disrupts splice site', 'splicesite_coord', 'splicesite_category', 'matched_transcripts'], delimiter='\t')
writer.writeheader()
writer.writerows(table_rows)
# To run this script:
# python3 main.py data/MTCL1/MTCL1_QTL_results.tsv data/MTCL1/MTCL1_moloc_results.tsv data/gencode_toy/gencode.v38.toy.gtf