We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
将vp中vp_rtsp_src_node和vp_rtsp_des_node源码中关于gstreamer的命令进行组合,使用gst-launch进行测试,观察命令行的资源使用情形: gst-launch-1.0 rtspsrc location=rtsp://192.168.21.231:1684/live/mainstream latency=0 drop-on-latency=true ! application/x-rtp,media=video ! rtph264depay ! h264parse ! nvv4l2decoder ! nvvideoconvert ! nvv4l2h264enc ! h264parse ! rtspclientsink protocols=tcp latency=0 location=rtsp://localhost:7148/live/nvtest 从资源使用来看,CPU和GPU的占用都特别的少:
vp
vp_rtsp_src_node
vp_rtsp_des_node
gstreamer
gst-launch
gst-launch-1.0 rtspsrc location=rtsp://192.168.21.231:1684/live/mainstream latency=0 drop-on-latency=true ! application/x-rtp,media=video ! rtph264depay ! h264parse ! nvv4l2decoder ! nvvideoconvert ! nvv4l2h264enc ! h264parse ! rtspclientsink protocols=tcp latency=0 location=rtsp://localhost:7148/live/nvtest
CPU
GPU
使用vp中vp_rtsp_src_node和vp_rtsp_des_node方案进行测试,测试仅包括rtsp拉流、解码、编码和推流流程,观察资源占用:
vp_rtsp_src_nod
rtsp
auto rtsp_src_0 = std::make_shared<vp_nodes::vp_rtsp_src_node>("rtsp_src_0", 0, "rtsp://192.168.21.231:1684/live/mainstream", 1, "nvv4l2decoder ! nvvideoconvert"); auto rtsp_des_0 = std::make_shared<vp_nodes::vp_rtsp_des_node>("rtsp_des_0", 0, 7148, "live/rtsp0"); rtsp_des_0->attach_to({ rtsp_src_0 }); rtsp_src_0->start();
疑问:GPU开始有3%的使用,CPU有一个核心的使用率在20%~40%的使用?为什么使用命令行与源码的差异在资源占用上如此大呢?使用代码方式导致资源占用高的原因是什么呢?
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
No branches or pull requests
将
vp
中vp_rtsp_src_node
和vp_rtsp_des_node
源码中关于gstreamer
的命令进行组合,使用gst-launch
进行测试,观察命令行的资源使用情形:gst-launch-1.0 rtspsrc location=rtsp://192.168.21.231:1684/live/mainstream latency=0 drop-on-latency=true ! application/x-rtp,media=video ! rtph264depay ! h264parse ! nvv4l2decoder ! nvvideoconvert ! nvv4l2h264enc ! h264parse ! rtspclientsink protocols=tcp latency=0 location=rtsp://localhost:7148/live/nvtest
从资源使用来看,
CPU
和GPU
的占用都特别的少:使用
vp
中vp_rtsp_src_nod
e和vp_rtsp_des_node
方案进行测试,测试仅包括rtsp
拉流、解码、编码和推流流程,观察资源占用:疑问:
GPU
开始有3%的使用,CPU
有一个核心的使用率在20%~40%的使用?为什么使用命令行与源码的差异在资源占用上如此大呢?使用代码方式导致资源占用高的原因是什么呢?The text was updated successfully, but these errors were encountered: