-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathevolve.py
551 lines (449 loc) · 19.2 KB
/
evolve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
################## Functions for satellite evolution ####################
# Arthur Fangzhou Jiang 2016, HUJI --- original version
# Arthur Fangzhou Jiang 2019, HUJI, UCSC --- revisions
# Sheridan Beckwith Green 2020, Yale University
#########################################################################
import config as cfg
import cosmo as co
import profiles as pr
import numpy as np
from scipy.interpolate import interp1d,interp2d
from scipy.optimize import brentq
#########################################################################
#---tidal tracks
alpha_grid_P10 = np.array([1.5,1.,0.5,0.])
mu_vmax_grid_P10 = np.array([0.4,0.4,0.4,0.4])
eta_vmax_grid_P10 = np.array([0.24,0.3,0.35,0.37])
mu_rmax_grid_P10 = np.array([0.,-0.3,-0.4,-1.3])
eta_rmax_grid_P10 = np.array([0.48,0.4,0.27,0.05])
mu_vmax_interp_P10 = interp1d(alpha_grid_P10,mu_vmax_grid_P10,
kind='cubic')
eta_vmax_interp_P10 = interp1d(alpha_grid_P10,eta_vmax_grid_P10,
kind='cubic')
mu_rmax_interp_P10 = interp1d(alpha_grid_P10,mu_rmax_grid_P10,
kind='cubic')
eta_rmax_interp_P10 = interp1d(alpha_grid_P10,eta_rmax_grid_P10,
kind='cubic')
def g_P10(x,alpha=1.):
"""
Penarrubia+10 tidal tracks, i.e., the evolution of v_max(t)/v_max(0)
and l_max(t)/l_max(0) as functions of the bound mass fraction
m(t)/m(0)
Syntax:
g_P10(x,alpha=1.)
where
x:=m(t)/m(0), i.e., the bound mass fraction (float)
alpha: the initial inner slope of a subhalo, i.e., the initial
"gamma" in the Zhao96 and Kravtsov+98 alpha-beta-gamma
profile (default=1., appropriate for NFW)
Return:
v_max(t)/v_max(0), l_max(t)/l_max(0)
"""
if alpha < alpha_grid_P10.min():
alpha = alpha_grid_P10.min()
if alpha > alpha_grid_P10.max():
alpha = alpha_grid_P10.max()
mu_vmax = mu_vmax_interp_P10(alpha)
eta_vmax = eta_vmax_interp_P10(alpha)
mu_rmax = mu_rmax_interp_P10(alpha)
eta_rmax = eta_rmax_interp_P10(alpha)
y = 2./(1.+x)
return y**mu_vmax * x**eta_vmax, y**mu_rmax * x**eta_rmax
alpha_grid_EPW18 = np.array([1.5,1.,0.5,0.])
lefflmax_grid_EPW18 = np.array([0.05,0.1])
alpha_mesh_EPW18,lefflmax_mesh_EPW18 = np.meshgrid(alpha_grid_EPW18,
lefflmax_grid_EPW18)
# lgxs_leff_mesh_EPW18 = np.array([[-3.96,-2.64,-1.32,0.],
# [-3.12,-2.08,-1.04,0.]])
# mu_leff_mesh_EPW18 = np.array([[0.83,0.47,0.11,-0.25],
# [0.865,0.5,0.135,-0.23]])
# eta_leff_mesh_EPW18 = np.array([[0.74,0.41,0.08,-0.25],
# [0.745,0.42,0.095,-0.23]])
# lgxs_mstar_mesh_EPW18 = np.array([[-2.4,-2.64,-2.88,-3.12],
# [-1.955,-2.08,-2.205,-2.33]])
# mu_mstar_mesh_EPW18 = np.array([[1.39,1.87,2.35,2.83],
# [1.675,1.8,1.925,2.05]])
# eta_mstar_mesh_EPW18 = np.array([[1.39,1.87,2.35,2.83],
# [1.675,1.8,1.925,2.05]])
lgxs_leff_mesh_EPW18 = np.array([[-2.4,-2.64,-2.9,-3.12],
[-2.,-2.08,-2.2,-2.33]])
mu_leff_mesh_EPW18 = np.array([[0.59,0.47,0.19,-0.15],
[0.75,0.5,0.21,-0.15]])
eta_leff_mesh_EPW18 = np.array([[0.59,0.41,0.07,-0.35],
[0.71,0.42,0.09,-0.33]])
lgxs_mstar_mesh_EPW18 = np.array([[-2.4,-2.64,-2.9,-3.12],
[-2.,-2.08,-2.2,-2.33]])
mu_mstar_mesh_EPW18 = np.array([[1.39,1.87,2.35,2.83],
[1.68,1.8,1.93,2.05]])
eta_mstar_mesh_EPW18 = np.array([[1.39,1.87,2.35,2.83],
[1.68,1.8,1.93,2.05]])
lgxs_leff_interp_EPW18 = interp2d(alpha_grid_EPW18,lefflmax_grid_EPW18,
lgxs_leff_mesh_EPW18,kind='linear')
mu_leff_interp_EPW18 = interp2d(alpha_grid_EPW18,lefflmax_grid_EPW18,
mu_leff_mesh_EPW18,kind='linear')
eta_leff_interp_EPW18 = interp2d(alpha_grid_EPW18,lefflmax_grid_EPW18,
eta_leff_mesh_EPW18,kind='linear')
lgxs_mstar_interp_EPW18 = interp2d(alpha_grid_EPW18,lefflmax_grid_EPW18,
lgxs_mstar_mesh_EPW18,kind='linear')
mu_mstar_interp_EPW18 = interp2d(alpha_grid_EPW18,lefflmax_grid_EPW18,
mu_mstar_mesh_EPW18,kind='linear')
eta_mstar_interp_EPW18 = interp2d(alpha_grid_EPW18,lefflmax_grid_EPW18,
eta_mstar_mesh_EPW18,kind='linear')
def g_EPW18(x,alpha=1.,lefflmax=0.1):
"""
Errani, Penerrubia, & Walker (2018) tidal tracks, i.e., the evolution
of l_eff(t)/l_eff(0) and m_star(t)/m_star(0) as functions of the mass
within l_max, i.e., m_max(t)/m_max(0)
Syntax:
g_EPW18(x,alpha=1.,lefflmax=0.1)
where
x:=m_max(t)/m_max(0), i.e., the mass within l_max wrt the initial
value of that (float)
alpha: the initial inner slope of a subhalo, i.e., the initial
"gamma" in the Zhao96 and Kravtsov+98 alpha-beta-gamma
profile (default=1., appropriate for NFW)
lefflmax: the initial ratio between l_eff and l_max, i.e., how
segregated the stars and DM are initially (default=0.1)
Return:
l_eff(t)/l_eff(0), m_star(t)/m_star(0)
"""
xs_leff = 10.**lgxs_leff_interp_EPW18(alpha,lefflmax)
mu_leff = mu_leff_interp_EPW18(alpha,lefflmax)
eta_leff = eta_leff_interp_EPW18(alpha,lefflmax)
xs_mstar = 10.**lgxs_mstar_interp_EPW18(alpha,lefflmax)
mu_mstar = mu_mstar_interp_EPW18(alpha,lefflmax)
eta_mstar = eta_mstar_interp_EPW18(alpha,lefflmax)
y_leff = (1.+xs_leff)/(x+xs_leff)
y_mstar = (1.+xs_mstar)/(x+xs_mstar)
return y_leff**mu_leff *x**eta_leff, y_mstar**mu_mstar *x**eta_mstar
def Dekel(mv,mv0,lmax0,vmax0,alpha0,z=0.):
"""
Use the Penarrubia+10 tidal tracks to evolve a satellite described by
a Dekel+17 profile, assuming that the innermost slope alpha doesn't
change.
Syntax:
Dekel(mv,mv0,lmax0,vmax0,alpha0,z=0.)
where
mv: the evolved virial mass [M_sun] (float or array)
mv0: the initial virial mass [M_sun] (float)
lmax0: the initial l_max, i.e., the radius where the maximum
circular velocity is reached [kpc] (float)
vmax0: the initial v_max, i.e., the maximum circular velocity
[kpc/Gyr] (float)
alpha0: the initial innermost logarithmic density slope (float)
z: redshift, for computing the critical density rho_crit (float)
(default=0.)
Return:
the new Dekel concentration, c(float),
the new spherical overdensity, Delta (float)
"""
g_vmax,g_lmax = g_P10(mv/mv0,alpha0)
lmax = lmax0 * g_lmax
vmax = vmax0 * g_vmax
s2 = 2.-alpha0
s3 = 3.-alpha0
A = (cfg.G * mv / lmax / vmax**2)**(0.5/s3) * (s2/s3)
lv = lmax / s2**2 * A**2 / (1.-A)**2
c = s2**2 * lv / lmax
rhoc = co.rhoc(z,h=cfg.h,Om=cfg.Om,OL=cfg.OL)
Delta = 3.*mv / (cfg.FourPi * lv**3 * rhoc)
return c,Delta
def Dekel2(mv,mv0,lmax0,vmax0,alpha0,slope0,z=0.):
"""
Use the Penarrubia+10 tidal tracks to evolve a satellite described by
a Dekel+17 profile, assuming that the innermost slope alpha doesn't
change.
Note that this is a variant of the "Dekel" function: use the initial
inner slope at l ~ 0.01 l_vir, instead of the innermost slope, as the
slope condition for the tidal tracks.
Syntax:
Dekel2(mv,mv0,lmax0,vmax0,alpha0,slope0,z=0.)
where
mv: the evolved virial mass [M_sun] (float or array)
mv0: the initial virial mass [M_sun] (float)
lmax0: the initial l_max, i.e., the radius where the maximum
circular velocity is reached [kpc] (float)
vmax0: the initial v_max, i.e., the maximum circular velocity
[kpc/Gyr] (float)
alpha0: the initial innermost logarithmic density slope (float)
slope0: the initial inner logarithmic density slope at
l ~ 0.01 l_vir -- this is used as the slope condition for the
tidal tracks (float)
z: redshift, for computing the critical density rho_crit (float)
(default=0.)
Return:
the new Dekel concentration, c(float),
the new spherical overdensity, Delta (float)
"""
g_vmax,g_lmax = g_P10(mv/mv0,slope0)
lmax = lmax0 * g_lmax
vmax = vmax0 * g_vmax
s2 = 2.-alpha0
s3 = 3.-alpha0
A = (cfg.G * mv / lmax / vmax**2)**(0.5/s3) * (s2/s3)
lv = lmax / s2**2 * A**2 / (1.-A)**2
c = s2**2 * lv / lmax
rhoc = co.rhoc(z,h=cfg.h,Om=cfg.Om,OL=cfg.OL)
Delta = 3.*mv / (cfg.FourPi * lv**3 * rhoc)
return c,Delta
#---for tidal stripping
def alpha_from_c2(c2p, c2s):
"""
Compute the best stripping efficiency prefactor, alpha, as a function of
the instantaneous host- and initial subhalo concentrations.
Syntax:
alpha_from_c2(c2p, cs2)
where
c2p: instantaneous host NFW concentration
c2s: initial subhalo NFW concentration
Return
stripping efficiency, alpha (float)
NOTE:
The initial NFW subhalo concentration is used, as the
Green and van den Bosch (2019) density profile model takes
into account the evolution of the density profile of the subhalo
given the INITIAL NFW profile.
TODO:
Update this based on the final DASH calibration.
"""
return 0.55 * ((c2s/c2p) / 2.)**(-1./3.)
def msub(sp,potential,xv,dt,choice='King62',alpha=1.):
"""
Evolve subhalo mass due to tidal stripping, by an amount of
alpha * [m - m(l_t)] * dt/t_dyn
where
m is the satellite virial mass;
m(l_t) is the satellite mass within the tidal radius l_t;
dt is the time step;
t_dyn is the host dynamical locally at the satellite's position.
Syntax:
mass(sp,potential,xv,dt,choice='King62',alpha=1.)
where
sp: satellite potential (an object of one of the classes defined
in profiles.py)
potential: host potential (a density profile object, or a list of
such objects that constitute a composite potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
dt: time interval [Gyr] (float)
choice: choice of tidal radius expression, including
"King62" (default): eq.(12.21) of Mo, van den Bosch, White 10
"Tormen98": eq.(3) of van den Bosch+17
alpha: stripping efficienty parameter -- the larger the
more effient (default=1.)
Return
evolved mass, m [M_sun] (float)
tidal radius, l_t [kpc] (float)
"""
lt = ltidal(sp,potential,xv,choice)
if lt<sp.rh:
dm = alpha * (sp.Mh-sp.M(lt)) * dt/pr.tdyn(potential,xv[0],xv[2])
dm = max(dm,0.) # avoid negative dm
if cfg.Mres is not None:
# Fixed Mres case
m = max(sp.Mh-dm, cfg.Mres)
else:
# Evolve subhaloes down to m/m_{acc} = phi_{res}
m = max(sp.Mh-dm,cfg.phi_res*sp.Minit)
else:
m = sp.Mh
return m,lt
def ltidal(sp,potential,xv,choice='King62'):
"""
Tidal radius [kpc] of a satellite, given satellite profile, host
potential, and phase-space coordinate within the host.
Syntax:
ltidal(sp,potential,xv,choice='King62')
where
sp: satellite potential (an object define in profiles.py)
potential: host potential (a density profile object, or a list of
such objects that constitute a composite potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
choice: choice of tidal radius expression, including
"King62" (default): eq.(12.21) of Mo, van den Bosch, White 10
"Tormen98": eq.(3) of van den Bosch+18
Note that the only difference between King62 and Tormen98 is that
the latter ignores the centrifugal force and thus gives larger tidal
radius (i.e., weaker tidal stripping).
"""
a = cfg.Rres
b = 9.999*sp.rh
if choice=='King62':
rhs = lt_King62_RHS(potential,xv)
elif choice=='Tormen98':
rhs = lt_Tormen98_RHS(potential,xv)
else:
sys.exit('Invalid choice of tidal radius type!')
fa = Findlt(a,sp,rhs)
fb = Findlt(b,sp,rhs)
if fa*fb>0.:
lt = cfg.Rres
else:
lt = brentq(Findlt, a,b, args=(sp,rhs),
rtol=1e-5,maxiter=1000)
return lt
def lt_Tormen98_RHS(potential,xv):
"""
Auxiliary function for 'ltidal', which returns the right-hand side
of the Tormen98 equation for tidal radius, as in eq.(3) of
van den Bosch+18, but inverted and with all subhalo terms on
left-hand side.
Syntax:
lt_Tormen98_RHS(potential,xv)
where
potential: host potential (a density profile object, or a list of
such objects that constitute a composite potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
"""
r = np.sqrt(xv[0]**2.+xv[2]**2.)
M = pr.M(potential,r)
rho = pr.rho(potential,r)
dlnMdlnr = cfg.FourPi * r**3 * rho / M
return (M / r**3) * (2. - dlnMdlnr)
def lt_King62_RHS(potential,xv):
"""
Auxiliary function for 'ltidal', which returns the right-hand side
of the King62 equation for tidal radius, as in eq.(12.21) of
Mo, van den Bosch, White 10, but inverted and with all subhalo
terms on left-hand side.
Syntax:
lt_King62_RHS(potential,xv)
where
potential: host potential (a density profile object, or a list of
such objects that constitute a composite potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
"""
r = np.sqrt(xv[0]**2.+xv[2]**2.)
Om = Omega(xv)
M = pr.M(potential,r)
rho = pr.rho(potential,r)
dlnMdlnr = cfg.FourPi * r**3 * rho / M
return (M / r**3) * (2.+Om**2.*r**3/cfg.G/M - dlnMdlnr)
def Findlt(l,sp,rhs):
"""
Auxiliary function for 'ltidal', which returns the
left-hand side - right-hand side
of the equation for tidal radius. Note that this works
for either the Tormen98 or King62, since all differences
are contained in the pre-computed right-hand side.
Syntax:
Findlt(l,sp,rhs)
where
l: radius in the satellite [kpc] (float)
sp: satellite potential (an object define in profiles.py)
rhs: right-hand side of equation, computed by either
lt_Tormen98_RHS() or lt_King62_RHS() (float)
"""
m = sp.M(l)
return (m / l**3) - rhs
def Omega(xv):
"""
Angular speed [Gyr^-1] upon input of phase-space coordinates
Syntax:
Omega(xv):
where
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
"""
rsqr = xv[0]**2.+xv[2]**2.
rxv = np.cross( np.array([xv[0],0.,xv[2]]) , xv[3:6] )
return np.sqrt(rxv[0]**2.+rxv[1]**2.+rxv[2]**2.) / rsqr
def mgas(sg,sp,gpotential,potential,xv,dt,kappa=1.,alpha=1.):
"""
Evolve satellite gas mass due to tidal stripping, by an amount of
[m - m(l_rp)] * dt / t_dyn
where m is the satellite gas mass; m(l_rp) is the satellite gas mass
within ram pressure radius l_rp; dt is the timestep size; and t_dyn
is the host dynamical time within radius r.
( r is given by np.sqrt(xv[0]**2.+xv[2]**2.) )
Syntax:
mgas(sg,sp,gpotential,potential,xv,dt,kappa=1.,alpha=1.)
where
sg: satellite gas profile (an object of one of the classes
defined in profiles.py)
sp: satellite potential (an object of one of the classes defined
in profiles.py)
gpotential: the gas part of the host potential (a density profile
object, or a list of such objects that constitute a composite
potential)
potential: host potential (a density profile object, or a list of
such objects that constitute a composite potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
dt: time interval [Gyr] (float)
kappa: the fudge factor of order unity in front of the
gravitational restoring pressure (0.5-2 depending on
assumptions, see Zinger+18 for details) (default=1.)
alpha: stripping efficienty parameter -- the larger the
more effient (default=1.)
Return:
evolved gas mass, m [M_sun] (float)
ram-pressure radius, l_rp [kpc] (float)
"""
lrp = lram(sg,sp,gpotential,xv,kappa)
if lrp<sg.rh:
dm = alpha *(sg.Mh-sg.M(lrp)) *dt/pr.tdyn(potential,xv[0],xv[2])
m = max(sg.Mh-dm,cfg.Mres)
else:
m = sg.Mh
return m,lrp
def lram(sg,sp,gpotential,xv,kappa=1.):
r"""
Ram-pressure radius [kpc] of a satellite, given satellite gas
profile, satellite profile, host halo gas profile, and phase space
coordinate within the host.
Syntax:
lram(sg,sp,gpotential,xv,kappa=1.)
where
sg: satellite gas profile (an object of one of the classes
defined in profiles.py)
sp: satellite potential (an object of one of the classes defined
in profiles.py)
gpotential: the gas part of the host potential (a density profile
object, or a list of such objects that constitute a composite
potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
kappa: the fudge factor of order unity in front of the
gravitational restoring pressure (0.5-2 depending on
assumptions, see Zinger+18 for details) (default=1.)
"""
a = cfg.Rres
b = 10.*sg.rh
fa = Findlrp(a,sg,sp,gpotential,xv,kappa)
fb = Findlrp(b,sg,sp,gpotential,xv,kappa)
if fa*fb>0.:
lrp = cfg.Rres
else:
lrp = brentq(Findlrp, a,b, args=(sg,sp,gpotential,xv,kappa),
rtol=1e-5,maxiter=1000)
return lrp
def Findlrp(l,sg,sp,gpotential,xv,kappa):
r"""
Auxiliary function for "lram", returns the
left-hand side - right-hand side
of the equation for ram pressure stripping radius:
kappa * G m(l) rho_sat_gas(l) / l = rho_host_gas(r) v(r)^2
Syntax:
Findlrp(l,sg,sp,gpotential,xv,kappa)
where:
l: radius in the satellite [kpc] (float)
sg: satellite gas profile (an object of one of the classes
defined in profiles.py)
sp: satellite potential (an object of one of the classes
defined in profiles.py)
gpotential: the gas part of the host potential (a density profile
object, or a list of such objects that constitute a composite
potential)
xv: phase-space coordinates [R,phi,z,VR,Vphi,Vz] in units of
[kpc,radian,kpc,kpc/Gyr,kpc/Gyr,kpc/Gyr] (float array)
kappa: the fudge factor in front of the gravitational restoring
pressure, that is of order unity (0.5-2 depending on
assumptions, see Zinger+18 for details) (default=1.)
"""
V = np.sqrt(xv[3]**2. + xv[4]**2. + xv[5]**2.)
rho = pr.rho(gpotential,xv[0],xv[2])
return kappa*cfg.G*sp.M(l)*sg.rho(l)/l - rho*V**2