-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathbench.py
204 lines (169 loc) · 8.07 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
from prompt_graph.tasker import NodeTask, GraphTask
from prompt_graph.utils import seed_everything
from torchsummary import summary
from prompt_graph.utils import print_model_parameters
from prompt_graph.utils import get_args
from prompt_graph.data import load4node,load4graph, split_induced_graphs
import pickle
import random
import numpy as np
import os
import pandas as pd
from prompt_graph.utils.report_data import ConfigBenchResult
def load_induced_graph(dataset_name, data, device):
folder_path = './Experiment/induced_graph/' + dataset_name
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = folder_path + '/induced_graph_min100_max300.pkl'
if os.path.exists(file_path):
with open(file_path, 'rb') as f:
print('loading induced graph...')
graphs_list = pickle.load(f)
print('Done!!!')
else:
print('Begin split_induced_graphs.')
split_induced_graphs(data, folder_path, device, smallest_size=100, largest_size=300)
with open(file_path, 'rb') as f:
graphs_list = pickle.load(f)
graphs_list = [graph.to(device) for graph in graphs_list]
return graphs_list
"""
Auto bench function. Using predefined param grid to search best results
for 1 pretrained model.
You need to provide at least 3 arguments
pretrain_task,
dataset_name,
prompt_type
"""
def do_config_bench(args:argparse.Namespace):
seed_everything(args.seed)
param_grid = {
'learning_rate': 10 ** np.linspace(-3, -1, 1000),
'weight_decay': 10 ** np.linspace(-5, -6, 1000),
# 'batch_size': np.linspace(32, 64, 32),
'batch_size': [32,64,128],
}
# if args.dataset_name in ['PubMed']:
# param_grid = {
# 'learning_rate': 10 ** np.linspace(-3, -1, 1000),
# 'weight_decay': 10 ** np.linspace(-5, -6, 1000),
# 'batch_size': np.linspace(128, 512, 200),
# }
if args.dataset_name in ['ogbn-arxiv','Flickr']:
param_grid = {
'learning_rate': 10 ** np.linspace(-3, -1, 1),
'weight_decay': 10 ** np.linspace(-5, -6, 1),
'batch_size': np.linspace(512, 512, 200),
}
num_iter=10
print('args.dataset_name', args.dataset_name)
# Define special num_iter cases
if args.prompt_type in['MultiGprompt','GPPT']:
print('num_iter = 1')
num_iter = 1
if args.dataset_name in ['ogbn-arxiv','Flickr']:
print('num_iter = 1')
num_iter = 1
best_params = {}
best_loss = float('inf')
final_acc_mean = 0
final_acc_std = 0
final_f1_mean = 0
final_f1_std = 0
final_roc_mean = 0
final_roc_std = 0
# args.pretrain_task = 'GraphTask'
# # # # # args.prompt_type = 'MultiGprompt'
# args.dataset_name = 'COLLAB'
# # args.dataset_name = 'Cora'
# # num_iter = 1
# args.shot_num = 1
# args.pre_train_model_path='./Experiment/pre_trained_model/DD/DGI.GCN.128hidden_dim.pth'
if args.pretrain_task == 'NodeTask':
data, input_dim, output_dim = load4node(args.dataset_name)
data = data.to(args.device)
if args.prompt_type in ['Gprompt', 'All-in-one', 'GPF', 'GPF-plus']:
graphs_list = load_induced_graph(args.dataset_name, data, args.device)
else:
graphs_list = None
if args.pretrain_task == 'GraphTask':
input_dim, output_dim, dataset = load4graph(args.dataset_name)
print('num_iter',num_iter)
for a in range(num_iter):
params = {k: random.choice(v) for k, v in param_grid.items()}
print(params)
if args.pretrain_task == 'NodeTask':
tasker = NodeTask(pre_train_model_path = args.pre_train_model_path,
dataset_name = args.dataset_name, num_layer = args.num_layer,
gnn_type = args.gnn_type, hid_dim = args.hid_dim, prompt_type = args.prompt_type,
epochs = args.epochs, shot_num = args.shot_num, device=args.device, lr = params['learning_rate'], wd = params['weight_decay'],
batch_size = int(params['batch_size']), data = data, input_dim = input_dim, output_dim = output_dim, graphs_list = graphs_list)
elif args.pretrain_task == 'GraphTask':
tasker = GraphTask(pre_train_model_path = args.pre_train_model_path,
dataset_name = args.dataset_name, num_layer = args.num_layer, gnn_type = args.gnn_type, hid_dim = args.hid_dim, prompt_type = args.prompt_type, epochs = args.epochs,
shot_num = args.shot_num, device=args.device, lr = params['learning_rate'], wd = params['weight_decay'],
batch_size = int(params['batch_size']), dataset = dataset, input_dim = input_dim, output_dim = output_dim)
else:
raise ValueError(f"Unexpected pretrain_task: {args.pretrain_task}.")
pre_train_type = tasker.pre_train_type
# 返回平均损失
avg_best_loss, mean_test_acc, std_test_acc, mean_f1, std_f1, mean_roc, std_roc, mean_prc, std_prc = tasker.run()
# Convert each metric to Python float
avg_best_loss = float(avg_best_loss)
mean_test_acc = float(mean_test_acc)
std_test_acc = float(std_test_acc)
mean_f1 = float(mean_f1)
std_f1 = float(std_f1)
mean_roc = float(mean_roc)
std_roc = float(std_roc)
mean_prc = float(mean_prc)
std_prc = float(std_prc)
print(f"For {a}th searching, Tested Params: {params}, Avg Best Loss: {avg_best_loss}")
if avg_best_loss < best_loss:
best_loss = avg_best_loss
best_params = params
final_acc_mean = mean_test_acc
final_acc_std = std_test_acc
final_f1_mean = mean_f1
final_f1_std = std_f1
final_roc_mean = mean_roc
final_roc_std = std_roc
if isinstance(best_params,dict):
best_params = {k:float(v) for k,v in best_params.items()}
return ConfigBenchResult(
pretrain_task_type=args.pretrain_task,
dataset_name=args.dataset_name,
prompt_type=args.prompt_type,
best_params=best_params,
best_loss=best_loss,
final_acc_mean = final_acc_mean,
final_acc_std = final_acc_std,
final_f1_mean = final_f1_mean,
final_f1_std=final_f1_std,
final_roc_mean=final_roc_mean,
final_roc_std=final_roc_std,
)
# pre_train_types = ['None', 'DGI', 'GraphMAE', 'Edgepred_GPPT', 'Edgepred_Gprompt', 'GraphCL', 'SimGRACE']
# prompt_types = ['None', 'GPPT', 'All-in-one', 'Gprompt', 'GPF', 'GPF-plus']
if __name__ == "__main__":
args = get_args()
cbr_result = do_config_bench(args=args)
file_name = args.gnn_type +"_total_results.xlsx"
if args.pretrain_task == 'NodeTask':
file_path = os.path.join('./Experiment/ExcelResults/Node/'+str(args.shot_num)+'shot/'+ args.dataset_name +'/', file_name)
if args.pretrain_task == 'GraphTask':
file_path = os.path.join('./Experiment/ExcelResults/Graph/'+str(args.shot_num)+'shot/'+ args.dataset_name +'/', file_name)
data = pd.read_excel(file_path, index_col=0)
col_name = f"{cbr_result.pre_train_type}+{args.prompt_type}"
print('col_name', col_name)
data.at['Final Accuracy', col_name] = f"{cbr_result.final_acc_mean:.4f}±{cbr_result.final_acc_std:.4f}"
data.at['Final F1', col_name] = f"{cbr_result.final_f1_mean:.4f}±{cbr_result.final_f1_std:.4f}"
data.at['Final AUROC', col_name] = f"{cbr_result.final_roc_mean:.4f}±{cbr_result.final_roc_std:.4f}"
data.to_excel(file_path)
print("Data saved to "+file_path+" successfully.")
print("After searching, Final Accuracy {:.4f}±{:.4f}(std)".format(cbr_result.final_acc_mean, cbr_result.final_acc_std))
print("After searching, Final F1 {:.4f}±{:.4f}(std)".format(cbr_result.final_f1_mean, cbr_result.final_f1_std))
print("After searching, Final AUROC {:.4f}±{:.4f}(std)".format(cbr_result.final_roc_mean, cbr_result.final_roc_std))
print('best_params ', cbr_result.best_params)
print('best_loss ', cbr_result.best_loss)