-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathpinecone_test.py
284 lines (230 loc) · 9.95 KB
/
pinecone_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import pinecone
import requests
import mimetypes
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlsplit
from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.docstore.document import Document
from langchain.vectorstores import Pinecone as BasePinecone
from langchain.chat_models import ChatOpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from langchain.document_loaders import (
PyPDFLoader,
CSVLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
TextLoader,
)
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
import uuid
from typing import (
Any,
List,
Optional,
TypeVar,
)
from langchain.embeddings.base import Embeddings
VST = TypeVar("VST", bound="VectorStore")
load_dotenv()
# Get the Variables from the .env file
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
PINECONE_ENVIRONMENT = os.getenv('PINECONE_ENVIRONMENT')
PINECONE_INDEX_NAME = os.getenv('PINECONE_INDEX_NAME')
# WEBSITE_URL = os.getenv('WEBSITE_URLS')
# WEBSITE_URLS = WEBSITE_URL.split(",")
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
chat = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
compressor = LLMChainExtractor.from_llm(chat)
class Pinecone(BasePinecone):
@classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
batch_size: int = 32,
text_key: str = "text",
index_name: Optional[str] = None,
namespace: Optional[str] = None,
upsert_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> tuple[BasePinecone, list[str]]:
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
indexes = pinecone.list_indexes() # checks if provided index exists
if index_name in indexes:
index = pinecone.Index(index_name)
elif len(indexes) == 0:
raise ValueError(
"No active indexes found in your Pinecone project, "
"are you sure you're using the right API key and environment?"
)
else:
raise ValueError(
f"Index '{index_name}' not found in your Pinecone project. "
f"Did you mean one of the following indexes: {', '.join(indexes)}"
)
ids_batch = []
for i in range(0, len(texts), batch_size):
# set end position of batch
i_end = min(i + batch_size, len(texts))
# get batch of texts and ids
lines_batch = texts[i:i_end]
# create ids if not provided
if ids:
ids_batch = ids[i:i_end]
else:
ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
# create embeddings
embeds = embedding.embed_documents(lines_batch)
# prep metadata and upsert batch
if metadatas:
metadata = metadatas[i:i_end]
else:
metadata = [{} for _ in range(i, i_end)]
for j, line in enumerate(lines_batch):
metadata[j][text_key] = line
to_upsert = zip(ids_batch, embeds, metadata)
# upsert to Pinecone
_upsert_kwargs = upsert_kwargs or {}
index.upsert(vectors=list(to_upsert), namespace=namespace, **_upsert_kwargs)
return cls(index, embedding.embed_query, text_key, namespace, **kwargs), ids_batch
class PineconeManager:
def __init__(self, api_key, environment):
pinecone.init(
api_key=api_key,
environment=environment
)
def list_indexes(self):
return pinecone.list_indexes()
def create_index(self, index_name, dimension, metric):
pinecone.create_index(name=index_name, dimension=dimension, metric=metric)
def delete_index(self, index_name):
pinecone.deinit()
class URLHandler:
@staticmethod
def is_valid_url(url):
parsed_url = urlsplit(url)
return bool(parsed_url.scheme) and bool(parsed_url.netloc)
@staticmethod
def extract_links(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
links = []
for link in soup.find_all('a'):
href = link.get('href')
if href:
absolute_url = urljoin(url, href)
if URLHandler.is_valid_url(absolute_url):
links.append(absolute_url)
return links
@staticmethod
def extract_links_from_websites(websites):
all_links = []
for website in websites:
links = URLHandler.extract_links(website)
all_links.extend(links)
return all_links
class DocumentLoaderFactory:
@staticmethod
def get_loader(file_path_or_url):
if file_path_or_url.startswith("http://") or file_path_or_url.startswith("https://"):
handle_website = URLHandler()
return WebBaseLoader(handle_website.extract_links_from_websites([file_path_or_url]))
else:
mime_type, _ = mimetypes.guess_type(file_path_or_url)
if mime_type == 'application/pdf':
return PyPDFLoader(file_path_or_url)
elif mime_type == 'text/csv':
return CSVLoader(file_path_or_url)
elif mime_type == 'text/plain':
return TextLoader(file_path_or_url)
elif mime_type in ['application/msword',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document']:
return UnstructuredWordDocumentLoader(file_path_or_url)
else:
raise ValueError(f"Unsupported file type: {mime_type}")
class PineconeIndexManager:
def __init__(self, pinecone_manager, index_name):
self.pinecone_manager = pinecone_manager
self.index_name = index_name
def index_exists(self):
active_indexes = self.pinecone_manager.list_indexes()
return self.index_name in active_indexes
def create_index(self, dimension, metric):
self.pinecone_manager.create_index(self.index_name, dimension, metric)
def delete_index(self):
self.pinecone_manager.delete_index(self.index_name)
def train_or_load_model(train, pinecone_index_manager, file_path, name_space):
if train:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000,
chunk_overlap=400)
loader = DocumentLoaderFactory.get_loader(file_path)
pages = loader.load_and_split(text_splitter=text_splitter)
if pinecone_index_manager.index_exists():
print("Updating the model")
pinecone_index, vector_ids = Pinecone.from_documents(pages, embeddings,
index_name=pinecone_index_manager.index_name,
namespace=name_space)
print(vector_ids)
# vector_ids = list(upsert_result.keys())
return pinecone_index
else:
pinecone_index = Pinecone.from_existing_index(index_name=pinecone_index_manager.index_name,
namespace=name_space, embedding=embeddings)
return pinecone_index
def answer_questions(pinecone_index):
pinecone_index_retriever = pinecone_index.as_retriever()
messages = [
SystemMessage(
content='You will be provided with a document delimited by triple quotes and a question. Your task is to '
'answer the question using only the provided document and to cite the passage(s) of the document '
'used to answer the question. If the document does not contain the information needed to answer '
'this question then simply write: "Insufficient information." If an answer to the question is '
'provided, it must be annotated with a citation. Use the following format for to cite relevant '
'passages ({"citation": …}).')
]
while True:
question = input("Ask a question (type 'stop' to end): ")
if question.lower() == "stop":
break
compression_retriever = ContextualCompressionRetriever(base_compressor=compressor,
base_retriever=pinecone_index_retriever)
# docs = pinecone_index_retriever.similarity_search(query=question, k=1)
docs = compression_retriever.get_relevant_documents(query=question)
main_content = '"""'
for doc in docs:
main_content += doc.page_content + "\n\n"
main_content += '"""\n\n\nQuestion: ' + question + "\n"
print(main_content)
messages.append(HumanMessage(content=main_content))
ai_response = chat(messages).content
messages.pop()
messages.append(HumanMessage(content=question))
messages.append(AIMessage(content=ai_response))
print(ai_response)
def main():
pinecone_manager = PineconeManager(PINECONE_API_KEY, PINECONE_ENVIRONMENT)
pinecone_index_manager = PineconeIndexManager(pinecone_manager, PINECONE_INDEX_NAME)
file_path = "data/shams.txt"
name_space = "shams"
train = int(input("Do you want to train the model? (1 for yes, 0 for no): "))
pinecone_index = train_or_load_model(train, pinecone_index_manager, file_path, name_space)
answer_questions(pinecone_index)
if __name__ == "__main__":
main()