-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_gen.py
166 lines (136 loc) · 5.73 KB
/
data_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
import h5py as hpy
import cv2
import numpy as np
from multiprocessing.pool import ThreadPool
from random import shuffle
class DataGen:
def __init__(self, dbfile, pshape=(64,64), strides=(32,32),
dsx=4, ds_method='linear', us_method='cubic'):
self.dbfile = dbfile
interp = {'linear':cv2.INTER_LINEAR,
'cubic':cv2.INTER_CUBIC,
'area':cv2.INTER_AREA}
self.ds_method = interp[ds_method]
self.us_method = interp[us_method]
self.pshape = pshape
self.strides = strides
self.dsx = dsx
self.db = None
self.image_dict = None
self.datasets = None
self.patch_list = None
def load_db(self):
self.db = hpy.File(self.dbfile, mode='r')
return self.db
def load_images(self,datasets=None,show_prog=True):
if datasets==None:
datasets = self.datasets if self.datasets!=None else self.get_datasets()
image_dict=self.image_dict = {}
else:
image_dict = {}
db = self.db
for k,fname in enumerate(datasets):
if show_prog and (k+1)%100==0:
print('{:^4}//{:^4}'.format(k+1,len(db)))
image_dict[fname]=db[fname][:]
return image_dict
def get_datasets(self):
db = self.db
self.datasets=[]
db.visit(lambda x: self.datasets.append(x)
if isinstance(db[x],hpy.Dataset)
else None)
return self.datasets
def estimate_patchno(self, datasets):
num_patches = 0
for dsi in datasets:
ds=self.db[dsi]
num_patches += ((ds.shape[0]-self.pshape[0]+self.strides[0]-1)//self.strides[0]+1)*\
((ds.shape[1]-self.pshape[1]+self.strides[1]-1)//self.strides[1]+1)
return num_patches
def get_patch_list(self, datasets=None, pshape=None, strides=None, shdict=None):
if datasets==None:
datasets = self.datasets if self.datasets!=None else self.get_datasets()
patch_list=self.patch_list=[]
else:
patch_list = []
if shdict==None:
shdict=self.db
if pshape == None:
pshape=self.pshape
if strides == None:
strides=self.strides
for dsi in datasets:
img=shdict[dsi]
ys_list=list(range(0,img.shape[0]-pshape[0],strides[0]))+[img.shape[0]-pshape[0]]
xs_list=list(range(0, img.shape[1]-pshape[1], strides[1]))+[img.shape[1]-pshape[1]]
for ys in ys_list:
ye=ys+pshape[0]
for xs in xs_list:
xe=xs+pshape[1]
patch_list.append([dsi, np.s_[ys:ye], np.s_[xs:xe]])
return patch_list
def get_patch(self, patch):
ds,ys,xs=patch
return self.db[ds][ys,xs]
def patch_gen(self, patch_list, bsize, from_images=True, up_sample=False):
if from_images:
if self.image_dict==None:
self.load_images()
if up_sample:
def get_patch(patch):
ds,ys,xs=patch
X= self.image_dict[ds][ys,xs,...]
# if X.shape[-1]!=3:
# X=np.tile(X[...,None],(1,1,3))
Y = cv2.resize(X, None, fx=1./self.dsx, fy=1./self.dsx,
interpolation=self.ds_method)
Y = cv2.resize(Y, None, fx=self.dsx, fy=self.dsx,
interpolation=self.us_method)
return (X,Y)
else:
def get_patch(patch):
ds,ys,xs=patch
X= self.image_dict[ds][ys,xs,...]
# if X.shape[-1]!=3:
# X=np.tile(X[...,None],(1,1,3))
Y = cv2.resize(X, None, fx=1./self.dsx, fy=1./self.dsx,
interpolation=self.ds_method)
return (X,Y)
else:
if up_sample:
def get_patch(patch):
ds,ys,xs=patch
X= self.db[ds][ys,xs,...]
# if X.shape[-1]!=3:
# X=np.tile(X[...,None],(1,1,3))
Y = cv2.resize(X, None, fx=1./self.dsx, fy=1./self.dsx,
interpolation=self.ds_method)
Y = cv2.resize(Y, None, fx=self.dsx, fy=self.dsx,
interpolation=self.us_method)
return (X,Y)
else:
def get_patch(patch):
ds,ys,xs=patch
X= self.db[ds][ys,xs,...]
# if X.shape[-1]!=3:
# X=np.tile(X[...,None],(1,1,3))
Y = cv2.resize(X, None, fx=1./self.dsx, fy=1./self.dsx,
interpolation=self.ds_method)
return (X,Y)
ln=len(patch_list)
with ThreadPool(processes=4) as pool:
shuffle(patch_list)
task = pool.map_async(get_patch, patch_list[-bsize:])
while True:
shuffle(patch_list)
for istart in range(0,ln,bsize):
iend=min(istart + bsize, ln)
tup = task.get()
X=np.stack(x[0] for x in tup)
Y=np.stack(x[1] for x in tup)
task = pool.map_async(get_patch, patch_list[istart:iend])
yield (Y,X)
def closedb(self):
self.db.close()