forked from indutny/fft.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputation.tex
60 lines (49 loc) · 1.93 KB
/
computation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
\documentclass[11pt]{article}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{slashed}
\title{radix-4 Cooley-Tukey}
\author{Fedor Indutny}
\begin{document}
\maketitle
\begin{equation}
\begin{split}
X_k & = \sum^{N-1}_{n=0} x_n e^{-\frac{2 \pi i}{N} nk} \\
& = \sum^{N/4 - 1}_{n=0} x_{4n} e^{-\frac{2 \pi i}{N/4} nk} + \
x_{4n+1} e^{-\frac{2 \pi i}{N/4} (n+1/4) k} + \
x_{4n+2} e^{-\frac{2 \pi i}{N/4} (n+2/4) k} + \\
& \ \ \ \ \ \ \ \ x_{4n+3} e^{-\frac{2 \pi i}{N/4} (n+3/4) k} \\
& = \sum^{N/4 - 1}_{n=0} x_{4n} e^{-\frac{2 \pi i}{N/4} nk} + \
e^{-\frac{2 \pi i}{N}k} \sum^{N/4 - 1}_{n=0} x_{4n + 1} \
e^{-\frac{2 \pi i}{N} nk} + \
\dots \\
& = A_k + e^{-\frac{2 \pi i}{N}k} B_k + \
e^{-2 \frac{2 \pi i}{N}k} C_k + e^{-3 \frac{2 \pi i}{N}k} D_k
\end{split}
\end{equation}
Now, for $0 <= k < N/4$:
\begin{equation}
\begin{split}
X_{k + N/4} & = A_k + e^{-\frac{2 \pi i}{N}(k + N/4)} B_k + \
e^{-2 \frac{2 \pi i}{N}(k + N/4)} C_k + e^{-3 \frac{2 \pi i}{N}(k+ N/4)} D_k \\
& = A_k + e^{-\frac{1}{2} \pi i} e^{-\frac{2 \pi i}{N}k} B_k + \
e^{-\pi i} e^{-2 \frac{2 \pi i}{N}k} C_k + \
e^{-\frac{3}{2} \pi i} e^{-3 \frac{2 \pi i}{N}k} D_k \\
& = A_k - i e^{-\frac{2 \pi i}{N}k} B_k - e^{-2 \frac{2 \pi i}{N}k} C_k +
i e^{-3 \frac{2 \pi i}{N}k} D_k
\end{split}
\end{equation}
So putting all together:
\begin{equation}
\begin{split}
X_k & = A_k + e^{-\frac{2 \pi i}{N}k} B_k + \
e^{-2 \frac{2 \pi i}{N}k} C_k + e^{-3 \frac{2 \pi i}{N}k} D_k \\
X_{k + N/4} & = A_k - i e^{-\frac{2 \pi i}{N}k} B_k - e^{-2 \frac{2 \pi i}{N}k} C_k + \
i e^{-3 \frac{2 \pi i}{N}k} D_k \\
X_{k + 2N/4} & = A_k - e^{-\frac{2 \pi i}{N}k} B_k + e^{-2 \frac{2 \pi i}{N}k} C_k \
-e^{-3 \frac{2 \pi i}{N}k} D_k \\
X_{k + 3N/4} & = A_k + i e^{-\frac{2 \pi i}{N}k} B_k - e^{-2 \frac{2 \pi i}{N}k} C_k \
-i e^{-3 \frac{2 \pi i}{N}k} D_k
\end{split}
\end{equation}
\end{document}