-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathPASSLEAFdemo.py
99 lines (86 loc) · 3.41 KB
/
PASSLEAFdemo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# -*- coding: utf-8 -*-c
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
from unKR.utils import *
from unKR.data.Sampler import *
def main(arg_path):
print('This demo is for testing PASSLEAF')
args = setup_parser() # set parameters
args = load_config(args, arg_path)
seed_everything(args.seed)
print(args.dataset_name)
"""set up sampler to datapreprocess"""
train_sampler_class = import_class(f"unKR.data.{args.train_sampler_class}")
train_sampler = train_sampler_class(args) # 这个sampler是可选择的
test_sampler_class = import_class(f"unKR.data.{args.test_sampler_class}")
test_sampler = test_sampler_class(train_sampler)
"""set up datamodule"""
data_class = import_class(f"unKR.data.{args.data_class}")
kgdata = data_class(args, train_sampler, test_sampler)
"""set up model"""
model_class = import_class(f"unKR.model.{args.model_name}")
model = model_class(args)
"""set up lit_model"""
litmodel_class = import_class(f"unKR.lit_model.{args.litmodel_name}")
lit_model = litmodel_class(model, args)
"""set up logger"""
logger = pl.loggers.TensorBoardLogger("training/logs")
if args.use_wandb:
log_name = "_".join([args.model_name, args.dataset_name, str(args.lr)])
logger = pl.loggers.WandbLogger(name=log_name, project="unKR")
logger.log_hyperparams(vars(args))
"""early stopping"""
early_callback = pl.callbacks.EarlyStopping(
monitor="Eval_MAE",
mode="min",
patience=args.early_stop_patience,
# verbose=True,
check_on_train_epoch_end=False,
)
"""set up model save method"""
# save model with the best results saved on the validation set (It is set to MAE by default, and the result type can be replaced by user)
dirpath = "/".join(["output", args.eval_task, args.dataset_name, args.model_name])
model_checkpoint = pl.callbacks.ModelCheckpoint(
monitor="Eval_MAE",
mode="min",
filename="{epoch}-{Eval_MAE:.5f}",
dirpath=dirpath,
save_weights_only=True,
save_top_k=1,
)
callbacks = [early_callback, model_checkpoint]
# initialize trainer
if args.gpu != "cpu":
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callbacks,
logger=logger,
default_root_dir="training/logs",
gpus="0,",
check_val_every_n_epoch=args.check_val_every_n_epoch,
max_epochs=args.max_epochs, # 添加 max_epochs 参数
)
else:
trainer = pl.Trainer.from_argparse_args(
args,
callbacks=callbacks,
logger=logger,
default_root_dir="training/logs",
# gpus="0,",
check_val_every_n_epoch=args.check_val_every_n_epoch,
max_epochs=args.max_epochs, # 添加 max_epochs 参数
)
'''save parameters to config'''
if args.save_config:
save_config(args)
if not args.test_only:
# train&valid
trainer.fit(lit_model, datamodule=kgdata)
path = model_checkpoint.best_model_path
else:
path = "./output/confidence_prediction/ppi5k/PASSLEAF/epoch=62-Eval_wmr=2.92500.ckpt"
lit_model.load_state_dict(torch.load(path)["state_dict"])
lit_model.eval()
trainer.test(lit_model, datamodule=kgdata)
if __name__ == "__main__":
main(arg_path='config/PASSLEAFdemo.yaml')