-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathMakefile
250 lines (216 loc) · 8.83 KB
/
Makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
.PHONY: clean data lint requirements sync_data_to_s3 sync_data_from_s3
#################################################################################
# GLOBALS #
#################################################################################
PROJECT_DIR := $(shell dirname $(realpath $(lastword $(MAKEFILE_LIST))))
BUCKET = [OPTIONAL] your-bucket-for-syncing-data (do not include 's3://')
PROFILE = default
PROJECT_NAME = tennis
PYTHON_INTERPRETER = python3
USE_GPU = 0
ifeq ($(USE_GPU), 1)
CUDA_DEVICE = 0
else
CUDA_DEVICE = -1
endif
DATA_DIR = $(PROJECT_DIR)/data
ifeq (,$(shell which conda))
HAS_CONDA=False
else
HAS_CONDA=True
endif
#################################################################################
# COMMANDS #
#################################################################################
## Install Python Dependencies
requirements:
pip install -U pip setuptools wheel
pip install -r requirements.txt
## Run tests
RUNTEST=python -m unittest -v -b
ALLMODULES=$(wildcard src/test/test_*.py)
test_all:
${RUNTEST} ${ALLMODULES}
## Make Dataset
data: requirements
mkdir -p $(DATA_DIR)/processed
mkdir -p $(DATA_DIR)/interim
mkdir -p $(DATA_DIR)/raw
ALL_VIDEOS=$(wildcard $(DATA_DIR)/raw/*.mp4)
score_extract: $(addprefix $(DATA_DIR)/interim/scoreboard/, $(addsuffix .pkl, $(basename $(notdir $(ALL_VIDEOS)))))
$(DATA_DIR)/interim/scoreboard/%.pkl: $(DATA_DIR)/processed/frames/%
python deeptennis/features/extract_scoreboard.py \
--save-path $@ \
--frames-path $(DATA_DIR)/processed/frames/$(basename $(notdir $<)) \
--meta-file $(PROJECT_DIR)/deeptennis/match_meta.json
score_mask_extract: $(addprefix $(DATA_DIR)/interim/score_mask/, $(basename $(notdir $(ALL_VIDEOS))))
$(DATA_DIR)/interim/score_mask/%: $(DATA_DIR)/processed/frames/%
python deeptennis/features/extract_scoreboard.py \
--save-path $@ \
--frames-path $(DATA_DIR)/processed/frames/$(basename $(notdir $<)) \
--meta-file $(PROJECT_DIR)/deeptennis/match_meta.json \
--segmentation 1
court_extract: $(addprefix $(DATA_DIR)/interim/court/, $(addsuffix .json, $(basename $(notdir $(ALL_VIDEOS)))))
$(DATA_DIR)/interim/court/%.json: $(DATA_DIR)/interim/action_mask/%.json
python deeptennis/features/extract_court_keypoints.py \
--mask-path $< \
--save-path $@ \
--frames-path $(DATA_DIR)/processed/frames/$(basename $(notdir $<)) \
--meta-file $(PROJECT_DIR)/metadata/match_meta.json
player_tracking: $(addprefix $(DATA_DIR)/interim/player_tracking/, $(addsuffix .json, $(basename $(notdir $(ALL_VIDEOS)))))
$(DATA_DIR)/interim/player_tracking/%.json: $(DATA_DIR)/processed/frames/%
mkdir -p $(DATA_DIR)/interim/player_tracking && \
$(PYTHON_INTERPRETER) scripts/make_json_dataset.py --frames-path $(DATA_DIR)/processed/frames/$(basename $(notdir $<)) --output-path /tmp/player_tracking_temp.json && \
allennlp predict $(MODEL_PATH) /tmp/player_tracking_temp.json \
--cuda-device $(CUDA_DEVICE) --output-file $@ --silent --predictor default_image \
--batch-size 4 \
--overrides '{"dataset_reader": {"type": "image_annotation", "augmentation": [{"type": "resize","height": 512, "width": 512}, {"type": "normalize"}], "lazy": true}, "model": {"roi_box_head": {"decoder_thresh": 0.01}}}' \
--include-package allencv.data.dataset_readers \
--include-package allencv.modules.image_encoders \
--include-package allencv.modules.image_decoders \
--include-package allencv.modules.im2vec_encoders \
--include-package allencv.modules.im2im_encoders \
--include-package allencv.models.object_detection \
--include-package allencv.predictors \
&& rm /tmp/player_tracking_temp.json
data/interim/tracking_videos/%: $(DATA_DIR)/interim/player_tracking/%.json
python $(PROJECT_DIR)/scripts/make_tracking_video.py \
--tracking-path $(addsuffix .json, $(DATA_DIR)/interim/player_tracking/$(basename $(notdir $<))) \
--frame-path $(DATA_DIR)/processed/frames/$(basename $(notdir $<)) \
--save-path $@
clip_videos: $(addprefix $(DATA_DIR)/interim/match_clips_video/, $(notdir $(ALL_VIDEOS)))
$(DATA_DIR)/interim/match_clips_video/%.mp4: $(DATA_DIR)/interim/clips/%.pkl
python deeptennis/data/clips2vid.py \
--clip-path $< \
--save-path $@ \
--frame-path $(DATA_DIR)/processed/frames/$(basename $(notdir $<)) \
.PRECIOUS: $(DATA_DIR)/interim/action_mask/%.json
$(DATA_DIR)/interim/action_mask/%.json: $(DATA_DIR)/interim/featurized_frames/%.npy
python $(PROJECT_DIR)/scripts/extract_action.py \
--features-path $< \
--save-path $@
featurized: $(addprefix $(DATA_DIR)/interim/featurized_frames/, $(addsuffix .npy, $(basename $(notdir $(ALL_VIDEOS)))))
.PRECIOUS: $(DATA_DIR)/interim/featurized_frames/%.npy
$(DATA_DIR)/interim/featurized_frames/%.npy : FEATURIZE_PCA = 10
$(DATA_DIR)/interim/featurized_frames/%.npy : BATCH_SIZE = 32
$(DATA_DIR)/interim/featurized_frames/%.npy : $(DATA_DIR)/processed/frames/%
python $(PROJECT_DIR)/scripts/featurize_frames.py \
--img-path $< \
--save-path $@ \
--gpu $(USE_GPU) \
--batch-size $(BATCH_SIZE) \
--pca $(FEATURIZE_PCA)
frames: VFRAMES = 2000
frames: FPS = 1
frames: $(addprefix $(DATA_DIR)/processed/frames/, $(basename $(notdir $(ALL_VIDEOS))))
.PRECIOUS: $(DATA_DIR)/processed/frames/%
$(DATA_DIR)/processed/frames/%: $(DATA_DIR)/raw/%.mp4
python $(PROJECT_DIR)/scripts/vid2img.py \
--vid-path $< \
--img-path $@ \
--fps $(FPS) \
--vframes $(VFRAMES)
clean_data_interim:
rm -rf $(DATA_DIR)/interim/*
clean_data_processed:
rm -rf $(DATA_DIR)/processed/*
clean_data: clean_data_interim clean_data_processed
## Delete all compiled Python files
clean:
find . -type f -name "*.py[co]" -delete
find . -type d -name "__pycache__" -delete
## Lint using flake8
lint:
flake8 deeptennis
## Upload Data to S3
sync_data_to_s3:
ifeq (default,$(PROFILE))
aws s3 sync data/ s3://$(BUCKET)/data/
else
aws s3 sync data/ s3://$(BUCKET)/data/ --profile $(PROFILE)
endif
## Download Data from S3
sync_data_from_s3:
ifeq (default,$(PROFILE))
aws s3 sync s3://$(BUCKET)/data/ data/
else
aws s3 sync s3://$(BUCKET)/data/ data/ --profile $(PROFILE)
endif
## Set up python interpreter environment
create_environment:
ifeq (True,$(HAS_CONDA))
@echo ">>> Detected conda, creating conda environment."
ifeq (3,$(findstring 3,$(PYTHON_INTERPRETER)))
conda create --name $(PROJECT_NAME) python=3
else
conda create --name $(PROJECT_NAME) python=2.7
endif
@echo ">>> New conda env created. Activate with:\nsource activate $(PROJECT_NAME)"
else
@pip install -q virtualenv virtualenvwrapper
@echo ">>> Installing virtualenvwrapper if not already intalled.\nMake sure the following lines are in shell startup file\n\
export WORKON_HOME=$$HOME/.virtualenvs\nexport PROJECT_HOME=$$HOME/Devel\nsource /usr/local/bin/virtualenvwrapper.sh\n"
@bash -c "source `which virtualenvwrapper.sh`;mkvirtualenv $(PROJECT_NAME) --python=$(PYTHON_INTERPRETER)"
@echo ">>> New virtualenv created. Activate with:\nworkon $(PROJECT_NAME)"
endif
#################################################################################
# PROJECT RULES #
#################################################################################
#################################################################################
# Self Documenting Commands #
#################################################################################
.DEFAULT_GOAL := help
# Inspired by <http://marmelab.com/blog/2016/02/29/auto-documented-makefile.html>
# sed script explained:
# /^##/:
# * save line in hold space
# * purge line
# * Loop:
# * append newline + line to hold space
# * go to next line
# * if line starts with doc comment, strip comment character off and loop
# * remove target prerequisites
# * append hold space (+ newline) to line
# * replace newline plus comments by `---`
# * print line
# Separate expressions are necessary because labels cannot be delimited by
# semicolon; see <http://stackoverflow.com/a/11799865/1968>
.PHONY: help
help:
@echo "$$(tput bold)Available rules:$$(tput sgr0)"
@echo
@sed -n -e "/^## / { \
h; \
s/.*//; \
:doc" \
-e "H; \
n; \
s/^## //; \
t doc" \
-e "s/:.*//; \
G; \
s/\\n## /---/; \
s/\\n/ /g; \
p; \
}" ${MAKEFILE_LIST} \
| LC_ALL='C' sort --ignore-case \
| awk -F '---' \
-v ncol=$$(tput cols) \
-v indent=19 \
-v col_on="$$(tput setaf 6)" \
-v col_off="$$(tput sgr0)" \
'{ \
printf "%s%*s%s ", col_on, -indent, $$1, col_off; \
n = split($$2, words, " "); \
line_length = ncol - indent; \
for (i = 1; i <= n; i++) { \
line_length -= length(words[i]) + 1; \
if (line_length <= 0) { \
line_length = ncol - indent - length(words[i]) - 1; \
printf "\n%*s ", -indent, " "; \
} \
printf "%s ", words[i]; \
} \
printf "\n"; \
}' \
| more $(shell test $(shell uname) = Darwin && echo '--no-init --raw-control-chars')