forked from norybaby/poet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
194 lines (162 loc) · 8.32 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import codecs
import json
import logging
import os
import shutil
import sys
import time
import numpy as np
import tensorflow as tf
from char_rnn_model import CharRNNLM
from config_poem import config_poem_train
from data_loader import DataLoader
from word2vec_helper import Word2Vec
TF_VERSION = int(tf.__version__.split('.')[1])
def main(args=''):
args = config_poem_train(args)
# Specifying location to store model, best model and tensorboard log.
args.save_model = os.path.join(args.output_dir, 'save_model/model')
args.save_best_model = os.path.join(args.output_dir, 'best_model/model')
# args.tb_log_dir = os.path.join(args.output_dir, 'tensorboard_log/')
timestamp = str(int(time.time()))
args.tb_log_dir = os.path.abspath(os.path.join(args.output_dir, "tensorboard_log", timestamp))
print("Writing to {}\n".format(args.tb_log_dir))
# Create necessary directories.
if len(args.init_dir) != 0:
args.output_dir = args.init_dir
else:
if os.path.exists(args.output_dir):
shutil.rmtree(args.output_dir)
for paths in [args.save_model, args.save_best_model, args.tb_log_dir]:
os.makedirs(os.path.dirname(paths))
logging.basicConfig(stream=sys.stdout,
format='%(asctime)s %(levelname)s:%(message)s',
level=logging.INFO, datefmt='%I:%M:%S')
print('=' * 60)
print('All final and intermediate outputs will be stored in %s/' % args.output_dir)
print('=' * 60 + '\n')
logging.info('args are:\n%s', args)
if len(args.init_dir) != 0:
with open(os.path.join(args.init_dir, 'result.json'), 'r') as f:
result = json.load(f)
params = result['params']
args.init_model = result['latest_model']
best_model = result['best_model']
best_valid_ppl = result['best_valid_ppl']
if 'encoding' in result:
args.encoding = result['encoding']
else:
args.encoding = 'utf-8'
else:
params = {'batch_size': args.batch_size,
'num_unrollings': args.num_unrollings,
'hidden_size': args.hidden_size,
'max_grad_norm': args.max_grad_norm,
'embedding_size': args.embedding_size,
'num_layers': args.num_layers,
'learning_rate': args.learning_rate,
'cell_type': args.cell_type,
'dropout': args.dropout,
'input_dropout': args.input_dropout}
best_model = ''
logging.info('Parameters are:\n%s\n', json.dumps(params, sort_keys=True, indent=4))
# Create batch generators.
batch_size = params['batch_size']
num_unrollings = params['num_unrollings']
base_path = args.data_path
w2v_file = os.path.join(base_path, "vectors_poem.bin")
w2v = Word2Vec(w2v_file)
train_data_loader = DataLoader(base_path,batch_size,num_unrollings,w2v.model,'train')
test1_data_loader = DataLoader(base_path,batch_size,num_unrollings,w2v.model,'test')
valid_data_loader = DataLoader(base_path,batch_size,num_unrollings,w2v.model,'valid')
# Create graphs
logging.info('Creating graph')
graph = tf.Graph()
with graph.as_default():
w2v_vocab_size = len(w2v.model.vocab)
with tf.name_scope('training'):
train_model = CharRNNLM(is_training=True,w2v_model = w2v.model,vocab_size=w2v_vocab_size, infer=False, **params)
tf.get_variable_scope().reuse_variables()
with tf.name_scope('validation'):
valid_model = CharRNNLM(is_training=False,w2v_model = w2v.model, vocab_size=w2v_vocab_size, infer=False, **params)
with tf.name_scope('evaluation'):
test_model = CharRNNLM(is_training=False,w2v_model = w2v.model,vocab_size=w2v_vocab_size, infer=False, **params)
saver = tf.train.Saver(name='model_saver')
best_model_saver = tf.train.Saver(name='best_model_saver')
logging.info('Start training\n')
result = {}
result['params'] = params
try:
with tf.Session(graph=graph) as session:
# Version 8 changed the api of summary writer to use
# graph instead of graph_def.
if TF_VERSION >= 8:
graph_info = session.graph
else:
graph_info = session.graph_def
train_summary_dir = os.path.join(args.tb_log_dir, "summaries", "train")
train_writer = tf.summary.FileWriter(train_summary_dir, graph_info)
valid_summary_dir = os.path.join(args.tb_log_dir, "summaries", "valid")
valid_writer = tf.summary.FileWriter(valid_summary_dir, graph_info)
# load a saved model or start from random initialization.
if len(args.init_model) != 0:
saver.restore(session, args.init_model)
else:
tf.global_variables_initializer().run()
learning_rate = args.learning_rate
for epoch in range(args.num_epochs):
logging.info('=' * 19 + ' Epoch %d ' + '=' * 19 + '\n', epoch)
logging.info('Training on training set')
# training step
ppl, train_summary_str, global_step = train_model.run_epoch(session, train_data_loader, is_training=True,
learning_rate=learning_rate, verbose=args.verbose, freq=args.progress_freq)
# record the summary
train_writer.add_summary(train_summary_str, global_step)
train_writer.flush()
# save model
saved_path = saver.save(session, args.save_model,
global_step=train_model.global_step)
logging.info('Latest model saved in %s\n', saved_path)
logging.info('Evaluate on validation set')
valid_ppl, valid_summary_str, _ = valid_model.run_epoch(session, valid_data_loader, is_training=False,
learning_rate=learning_rate, verbose=args.verbose, freq=args.progress_freq)
# save and update best model
if (len(best_model) == 0) or (valid_ppl < best_valid_ppl):
best_model = best_model_saver.save(session, args.save_best_model,
global_step=train_model.global_step)
best_valid_ppl = valid_ppl
else:
learning_rate /= 2.0
logging.info('Decay the learning rate: ' + str(learning_rate))
valid_writer.add_summary(valid_summary_str, global_step)
valid_writer.flush()
logging.info('Best model is saved in %s', best_model)
logging.info('Best validation ppl is %f\n', best_valid_ppl)
result['latest_model'] = saved_path
result['best_model'] = best_model
# Convert to float because numpy.float is not json serializable.
result['best_valid_ppl'] = float(best_valid_ppl)
result_path = os.path.join(args.output_dir, 'result.json')
if os.path.exists(result_path):
os.remove(result_path)
with open(result_path, 'w') as f:
json.dump(result, f, indent=2, sort_keys=True)
logging.info('Latest model is saved in %s', saved_path)
logging.info('Best model is saved in %s', best_model)
logging.info('Best validation ppl is %f\n', best_valid_ppl)
logging.info('Evaluate the best model on test set')
saver.restore(session, best_model)
test_ppl, _, _ = test_model.run_epoch(session, test1_data_loader, is_training=False,
learning_rate=learning_rate, verbose=args.verbose, freq=args.progress_freq)
result['test_ppl'] = float(test_ppl)
except Exception as e:
print('err :{}'.format(e))
finally:
result_path = os.path.join(args.output_dir, 'result.json')
if os.path.exists(result_path):
os.remove(result_path)
with open(result_path, 'w',encoding='utf-8',errors='ignore') as f:
json.dump(result, f, indent=2, sort_keys=True)
if __name__ == '__main__':
args = '--output_dir output_poem --data_path ./data/poem/ --hidden_size 128 --embedding_size 128 --cell_type lstm'
main(args)