forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svs_inference.py
669 lines (595 loc) · 22.9 KB
/
svs_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
#!/usr/bin/env python3
"""Script to run the inference of singing-voice-synthesis model."""
import argparse
import logging
import shutil
import sys
import time
from pathlib import Path
from typing import Any, Dict, Optional, Sequence, Tuple, Union
import numpy as np
import soundfile as sf
import torch
from typeguard import check_argument_types
from espnet2.fileio.npy_scp import NpyScpWriter
from espnet2.gan_svs.vits import VITS
from espnet2.svs.singing_tacotron.singing_tacotron import singing_tacotron
from espnet2.tasks.svs import SVSTask
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.tts.utils import DurationCalculator
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
class SingingGenerate:
"""SingingGenerate class
Examples:
>>> import soundfile
>>> svs = SingingGenerate("config.yml", "model.pth")
>>> wav = svs("Hello World")[0]
>>> soundfile.write("out.wav", wav.numpy(), svs.fs, "PCM_16")
"""
def __init__(
self,
train_config: Optional[Union[Path, str]],
model_file: Optional[Union[Path, str]] = None,
threshold: float = 0.5,
minlenratio: float = 0.0,
maxlenratio: float = 10.0,
use_teacher_forcing: bool = False,
use_att_constraint: bool = False,
use_dynamic_filter: bool = False,
backward_window: int = 2,
forward_window: int = 4,
speed_control_alpha: float = 1.0,
noise_scale: float = 0.667,
noise_scale_dur: float = 0.8,
vocoder_config: Union[Path, str] = None,
vocoder_checkpoint: Union[Path, str] = None,
dtype: str = "float32",
device: str = "cpu",
seed: int = 777,
always_fix_seed: bool = False,
prefer_normalized_feats: bool = False,
):
"""Initialize SingingGenerate module."""
assert check_argument_types()
# setup model
model, train_args = SVSTask.build_model_from_file(
train_config, model_file, device
)
model.to(dtype=getattr(torch, dtype)).eval()
self.device = device
self.dtype = dtype
self.train_args = train_args
self.model = model
self.svs = model.svs
self.normalize = model.normalize
self.feats_extract = model.feats_extract
self.duration_calculator = DurationCalculator()
self.preprocess_fn = SVSTask.build_preprocess_fn(train_args, False)
self.use_teacher_forcing = use_teacher_forcing
self.seed = seed
self.always_fix_seed = always_fix_seed
self.vocoder = None
self.prefer_normalized_feats = prefer_normalized_feats
if vocoder_checkpoint is not None:
vocoder = SVSTask.build_vocoder_from_file(
vocoder_config, vocoder_checkpoint, model, device
)
if isinstance(vocoder, torch.nn.Module):
vocoder.to(dtype=getattr(torch, dtype)).eval()
self.vocoder = vocoder
logging.info(f"Extractor:\n{self.feats_extract}")
logging.info(f"Normalizer:\n{self.normalize}")
logging.info(f"SVS:\n{self.svs}")
if self.vocoder is not None:
logging.info(f"Vocoder:\n{self.vocoder}")
# setup decoding config
decode_conf = {}
decode_conf.update({"use_teacher_forcing": use_teacher_forcing})
if isinstance(self.svs, VITS):
decode_conf.update(
noise_scale=noise_scale,
noise_scale_dur=noise_scale_dur,
)
if isinstance(self.svs, singing_tacotron):
decode_conf.update(
threshold=threshold,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
use_att_constraint=use_att_constraint,
use_dynamic_filter=use_dynamic_filter,
forward_window=forward_window,
backward_window=backward_window,
)
self.decode_conf = decode_conf
@torch.no_grad()
def __call__(
self,
text: Union[Dict[str, Tuple], torch.Tensor, np.ndarray],
singing: Union[torch.Tensor, np.ndarray] = None,
label: Union[torch.Tensor, np.ndarray] = None,
midi: Union[torch.Tensor, np.ndarray] = None,
duration_phn: Union[torch.Tensor, np.ndarray] = None,
duration_ruled_phn: Union[torch.Tensor, np.ndarray] = None,
duration_syb: Union[torch.Tensor, np.ndarray] = None,
phn_cnt: Union[torch.Tensor, np.ndarray] = None,
slur: Union[torch.Tensor, np.ndarray] = None,
pitch: Union[torch.Tensor, np.ndarray] = None,
energy: Union[torch.Tensor, np.ndarray] = None,
spembs: Union[torch.Tensor, np.ndarray] = None,
sids: Union[torch.Tensor, np.ndarray] = None,
lids: Union[torch.Tensor, np.ndarray] = None,
decode_conf: Optional[Dict[str, Any]] = None,
):
assert check_argument_types()
# check inputs
if self.use_sids and sids is None:
raise RuntimeError("Missing required argument: 'sids'")
if self.use_lids and lids is None:
raise RuntimeError("Missing required argument: 'lids'")
if self.use_spembs and spembs is None:
raise RuntimeError("Missing required argument: 'spembs'")
# prepare batch
if isinstance(text, Dict):
data = self.preprocess_fn(
"<dummy>", dict(label=text["label"], score=text["score"])
)
label = data["label"]
midi = data["midi"]
duration_phn = data["duration_phn"]
duration_ruled_phn = data["duration_ruled_phn"]
duration_syb = data["duration_syb"]
phn_cnt = data["phn_cnt"]
slur = data["slur"]
batch = dict(text=data["label"])
else:
batch = dict(text=text)
if singing is not None:
batch.update(singing=singing)
if label is not None:
batch.update(label=label)
if midi is not None:
batch.update(midi=midi)
if duration_phn is not None:
batch.update(duration_phn=duration_phn)
if duration_ruled_phn is not None:
batch.update(duration_ruled_phn=duration_ruled_phn)
if duration_syb is not None:
batch.update(duration_syb=duration_syb)
if pitch is not None:
batch.update(pitch=pitch)
if phn_cnt is not None:
batch.update(phn_cnt=phn_cnt)
if slur is not None:
batch.update(slur=slur)
if energy is not None:
batch.update(energy=energy)
if spembs is not None:
batch.update(spembs=spembs)
if sids is not None:
batch.update(sids=sids)
if lids is not None:
batch.update(lids=lids)
batch = to_device(batch, self.device)
cfg = self.decode_conf
if decode_conf is not None:
cfg = self.decode_conf.copy()
cfg.update(decode_conf)
output_dict = self.model.inference(**batch, **cfg)
if output_dict.get("att_w") is not None:
duration, focus_rate = self.duration_calculator(output_dict["att_w"])
output_dict.update(duration=duration, focus_rate=focus_rate)
else:
output_dict.update(duration=None, focus_rate=None)
# apply vocoder (mel-to-wav)
if self.vocoder is not None:
if (
self.prefer_normalized_feats
or output_dict.get("feat_gen_denorm") is None
):
input_feat = output_dict["feat_gen"]
else:
input_feat = output_dict["feat_gen_denorm"]
wav = self.vocoder(input_feat)
output_dict.update(wav=wav)
return output_dict
@property
def fs(self) -> Optional[int]:
"""Return sampling rate."""
if hasattr(self.vocoder, "fs"):
return self.vocoder.fs
elif hasattr(self.svs, "fs"):
return self.svs.fs
else:
return None
@property
def use_speech(self) -> bool:
"""Return speech is needed or not in the inference."""
return self.use_teacher_forcing or getattr(self.svs, "use_gst", False)
@property
def use_sids(self) -> bool:
"""Return sid is needed or not in the inference."""
return self.svs.spks is not None
@property
def use_lids(self) -> bool:
"""Return sid is needed or not in the inference."""
return self.svs.langs is not None
@property
def use_spembs(self) -> bool:
"""Return spemb is needed or not in the inference."""
return self.svs.spk_embed_dim is not None
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
vocoder_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build SingingGenerate instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
vocoder_tag (Optional[str]): Vocoder tag of the pretrained vocoders.
Currently, the tags of parallel_wavegan are supported, which should
start with the prefix "parallel_wavegan/".
Returns:
SingingGenerate: SingingGenerate instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
if vocoder_tag is not None:
if vocoder_tag.startswith("parallel_wavegan/"):
try:
from parallel_wavegan.utils import download_pretrained_model
except ImportError:
logging.error(
"`parallel_wavegan` is not installed. "
"Please install via `pip install -U parallel_wavegan`."
)
raise
from parallel_wavegan import __version__
# NOTE(kan-bayashi): Filelock download is supported from 0.5.2
assert V(__version__) > V("0.5.1"), (
"Please install the latest parallel_wavegan "
"via `pip install -U parallel_wavegan`."
)
vocoder_tag = vocoder_tag.replace("parallel_wavegan/", "")
vocoder_file = download_pretrained_model(vocoder_tag)
vocoder_config = Path(vocoder_file).parent / "config.yml"
kwargs.update(vocoder_config=vocoder_config, vocoder_file=vocoder_file)
else:
raise ValueError(f"{vocoder_tag} is unsupported format.")
return SingingGenerate(**kwargs)
def inference(
output_dir: str,
batch_size: int,
dtype: str,
ngpu: int,
seed: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
train_config: Optional[str],
model_file: Optional[str],
use_teacher_forcing: bool,
noise_scale: float,
noise_scale_dur: float,
allow_variable_data_keys: bool,
vocoder_config: Optional[str] = None,
vocoder_checkpoint: Optional[str] = None,
vocoder_tag: Optional[str] = None,
):
"""Perform SVS model decoding."""
assert check_argument_types()
if batch_size > 1:
raise NotImplementedError("batch decoding is not implemented")
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
# 2. Build model
singingGenerate = SingingGenerate(
train_config=train_config,
model_file=model_file,
use_teacher_forcing=use_teacher_forcing,
noise_scale=noise_scale,
noise_scale_dur=noise_scale_dur,
vocoder_config=vocoder_config,
vocoder_checkpoint=vocoder_checkpoint,
dtype=dtype,
device=device,
)
# 3. Build data-iterator
loader = SVSTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=SVSTask.build_preprocess_fn(singingGenerate.train_args, False),
collate_fn=SVSTask.build_collate_fn(singingGenerate.train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
# 4. Start for-loop
output_dir = Path(output_dir)
(output_dir / "norm").mkdir(parents=True, exist_ok=True)
(output_dir / "denorm").mkdir(parents=True, exist_ok=True)
(output_dir / "speech_shape").mkdir(parents=True, exist_ok=True)
(output_dir / "wav").mkdir(parents=True, exist_ok=True)
(output_dir / "att_ws").mkdir(parents=True, exist_ok=True)
(output_dir / "probs").mkdir(parents=True, exist_ok=True)
(output_dir / "durations").mkdir(parents=True, exist_ok=True)
(output_dir / "focus_rates").mkdir(parents=True, exist_ok=True)
# Lazy load to avoid the backend error
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
with NpyScpWriter(
output_dir / "norm",
output_dir / "norm/feats.scp",
) as norm_writer, NpyScpWriter(
output_dir / "denorm", output_dir / "denorm/feats.scp"
) as denorm_writer, open(
output_dir / "speech_shape/speech_shape", "w"
) as shape_writer, open(
output_dir / "durations/durations", "w"
) as duration_writer, open(
output_dir / "focus_rates/focus_rates", "w"
) as focus_rate_writer:
for idx, (keys, batch) in enumerate(loader, 1):
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert _bs == 1, _bs
# Change to single sequence and remove *_length
# because inference() requires 1-seq, not mini-batch.
batch = {k: v[0] for k, v in batch.items() if not k.endswith("_lengths")}
logging.info(f"batch: {batch}")
logging.info(f"keys: {keys}")
start_time = time.perf_counter()
output_dict = singingGenerate(**batch)
key = keys[0]
insize = next(iter(batch.values())).size(0) + 1
if output_dict.get("feat_gen") is not None:
# standard text2mel model case
feat_gen = output_dict["feat_gen"]
logging.info(
"inference speed = {:.1f} frames / sec.".format(
int(feat_gen.size(0)) / (time.perf_counter() - start_time)
)
)
logging.info(f"{key} (size:{insize}->{feat_gen.size(0)})")
norm_writer[key] = output_dict["feat_gen"].cpu().numpy()
shape_writer.write(
f"{key} " + ",".join(map(str, output_dict["feat_gen"].shape)) + "\n"
)
if output_dict.get("feat_gen_denorm") is not None:
denorm_writer[key] = output_dict["feat_gen_denorm"].cpu().numpy()
else:
# end-to-end text2wav model case
wav = output_dict["wav"]
logging.info(
"inference speed = {:.1f} points / sec.".format(
int(wav.size(0)) / (time.perf_counter() - start_time)
)
)
logging.info(f"{key} (size:{insize}->{wav.size(0)})")
if output_dict.get("duration") is not None:
# Save duration and fucus rates
duration_writer.write(
f"{key} "
+ " ".join(map(str, output_dict["duration"].long().cpu().numpy()))
+ "\n"
)
if output_dict.get("focus_rate") is not None:
focus_rate_writer.write(
f"{key} {float(output_dict['focus_rate']):.5f}\n"
)
if output_dict.get("att_w") is not None:
# Plot attention weight
att_w = output_dict["att_w"].cpu().numpy()
if att_w.ndim == 2:
att_w = att_w[None][None]
elif att_w.ndim != 4:
raise RuntimeError(f"Must be 2 or 4 dimension: {att_w.ndim}")
w, h = plt.figaspect(att_w.shape[0] / att_w.shape[1])
fig = plt.Figure(
figsize=(
w * 1.3 * min(att_w.shape[0], 2.5),
h * 1.3 * min(att_w.shape[1], 2.5),
)
)
fig.suptitle(f"{key}")
axes = fig.subplots(att_w.shape[0], att_w.shape[1])
if len(att_w) == 1:
axes = [[axes]]
for ax, att_w in zip(axes, att_w):
for ax_, att_w_ in zip(ax, att_w):
ax_.imshow(att_w_.astype(np.float32), aspect="auto")
ax_.set_xlabel("Input")
ax_.set_ylabel("Output")
ax_.xaxis.set_major_locator(MaxNLocator(integer=True))
ax_.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.set_tight_layout({"rect": [0, 0.03, 1, 0.95]})
fig.savefig(output_dir / f"att_ws/{key}.png")
fig.clf()
if output_dict.get("prob") is not None:
# Plot stop token prediction
prob = output_dict["prob"].cpu().numpy()
fig = plt.Figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(prob)
ax.set_title(f"{key}")
ax.set_xlabel("Output")
ax.set_ylabel("Stop probability")
ax.set_ylim(0, 1)
ax.grid(which="both")
fig.set_tight_layout(True)
fig.savefig(output_dir / f"probs/{key}.png")
fig.clf()
# TODO(kamo): Write scp
if output_dict.get("wav") is not None:
sf.write(
f"{output_dir}/wav/{key}.wav",
output_dict["wav"].cpu().numpy(),
singingGenerate.fs,
"PCM_16",
)
# remove files if those are not included in output dict
if output_dict.get("feat_gen") is None:
shutil.rmtree(output_dir / "norm")
if output_dict.get("feat_gen_denorm") is None:
shutil.rmtree(output_dir / "denorm")
if output_dict.get("att_w") is None:
shutil.rmtree(output_dir / "att_ws")
if output_dict.get("duration") is None:
shutil.rmtree(output_dir / "durations")
if output_dict.get("focus_rate") is None:
shutil.rmtree(output_dir / "focus_rates")
if output_dict.get("prob") is None:
shutil.rmtree(output_dir / "probs")
if output_dict.get("wav") is None:
shutil.rmtree(output_dir / "wav")
def get_parser():
"""Get argument parser."""
parser = config_argparse.ArgumentParser(
description="SVS Decode",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use "_" instead of "-" as separator.
# "-" is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The path of output directory",
)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="Random seed",
)
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
parser.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument(
"--key_file",
type=str_or_none,
)
group.add_argument(
"--allow_variable_data_keys",
type=str2bool,
default=False,
)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--train_config",
type=str,
help="Training configuration file.",
)
group.add_argument(
"--model_file",
type=str,
help="Model parameter file.",
)
group = parser.add_argument_group("Decoding related")
group.add_argument(
"--use_teacher_forcing",
type=str2bool,
default=False,
help="Whether to use teacher forcing",
)
parser.add_argument(
"--noise_scale",
type=float,
default=0.667,
help="Noise scale parameter for the flow in vits",
)
parser.add_argument(
"--noise_scale_dur",
type=float,
default=0.8,
help="Noise scale parameter for the stochastic duration predictor in vits",
)
group = parser.add_argument_group("Vocoder related")
group.add_argument(
"--vocoder_checkpoint",
default="None",
type=str_or_none,
help="checkpoint file to be loaded.",
)
group.add_argument(
"--vocoder_config",
default=None,
type=str_or_none,
help="yaml format configuration file. if not explicitly provided, "
"it will be searched in the checkpoint directory. (default=None)",
)
return parser
def main(cmd=None):
"""Run SVS model decoding."""
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()