forked from benanne/kaggle-ndsb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ensemble_predictions.py
101 lines (79 loc) · 3.73 KB
/
ensemble_predictions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
"""
Given a set of validation predictions, this script computes the optimal linear weights on the validation set.
It computes the weighted blend of test predictions, where some models are replaced by their bagged versions.
"""
import os
import numpy as np
import sys
import theano
import theano.tensor as T
import scipy
import data
import utils
import nn_plankton
CONFIGS = ['convroll4_doublescale_fs5', 'cp8', 'convroll4_big_wd_maxout512',
'triplescale_fs2_fs5', 'cr4_ds', 'convroll5_preinit_resume_drop@420',
'doublescale_fs5_latemerge_2233', 'convroll_all_broaden_7x7_weightdecay', 'convroll4_1024_lesswd',
'convroll4_big_weightdecay']
BAGGED_CONFIGS = ['convroll4_doublescale_fs5', 'cp8', 'convroll4_big_wd_maxout512',
'cr4_ds', 'convroll5_preinit_resume_drop@420',
'convroll_all_broaden_7x7_weightdecay', 'convroll4_big_weightdecay']
# creating and checking the paths
n_models = len(CONFIGS)
valid_predictions_paths = []
for config in CONFIGS:
p = 'predictions/valid--blend_featblend_%s--featblend_%s--avg-prob.npy' % (config, config)
valid_predictions_paths.append(p)
test_predictions_paths = [p.replace('valid--', 'test--', 1) for p in valid_predictions_paths]
test_bagged_prediction_paths = []
for bagged_config in BAGGED_CONFIGS:
bagged_p = 'predictions/bagged--test--blend_featblend_bagged_%s--avg-prob.npy' % bagged_config
test_bagged_prediction_paths.append(bagged_p)
for i in xrange(n_models):
if bagged_config in test_predictions_paths[i]:
test_predictions_paths[i] = bagged_p
test_unbagged_prediction_paths = [p for p in test_predictions_paths if 'bagged' not in p]
missing_predictions = []
for path in valid_predictions_paths + test_bagged_prediction_paths + test_unbagged_prediction_paths:
if not os.path.isfile(path):
missing_predictions.append(path)
if missing_predictions:
print '\tPlease generate the following predictions:\n\t%s' % '\n\t'.join(missing_predictions)
sys.exit(0)
# loading validation predictions
s = np.load("validation_split_v1.pkl")
t_valid = data.labels_train[s['indices_valid']]
predictions_list = [np.load(path) for path in valid_predictions_paths]
predictions_stack = np.array(predictions_list).astype(theano.config.floatX) # num_sources x num_datapoints x 121
print "Individual prediction errors"
individual_prediction_errors = [utils.log_loss(p, t_valid) for p in predictions_list]
del predictions_list
for i in xrange(n_models):
print individual_prediction_errors[i], os.path.basename(valid_predictions_paths[i])
print
# optimizing weights
X = theano.shared(predictions_stack) # source predictions
t = theano.shared(utils.one_hot(t_valid)) # targets
W = T.vector('W')
s = T.nnet.softmax(W).reshape((W.shape[0], 1, 1))
weighted_avg_predictions = T.sum(X * s, axis=0) # T.tensordot(X, s, [[0], [0]])
error = nn_plankton.log_loss(weighted_avg_predictions, t)
grad = T.grad(error, W)
f = theano.function([W], error)
g = theano.function([W], grad)
w_init = np.zeros(n_models, dtype=theano.config.floatX)
out, loss, _ = scipy.optimize.fmin_l_bfgs_b(f, w_init, fprime=g, pgtol=1e-09, epsilon=1e-08, maxfun=10000)
weights = np.exp(out)
weights /= weights.sum()
print 'Optimal weights'
for i in xrange(n_models):
print weights[i], os.path.basename(valid_predictions_paths[i])
print
print 'Generating test set predictions'
predictions_list = [np.load(path) for path in test_predictions_paths]
predictions_stack = np.array(predictions_list) # num_sources x num_datapoints x 121
del predictions_list
target_path = 'predictions/weighted_blend.npy'
weighted_predictions = np.sum(predictions_stack * weights.reshape((weights.shape[0], 1, 1)), axis=0)
np.save(target_path, weighted_predictions)
print ' stored in %s' % target_path