UPST-NeRF(see our paper and project page )is capable of rendering photorealistic stylized novel views with a consistent appearance at various view angles in 3D space.
git clone https://github.com/semchan/UPST-NeRF.git
cd UPST-NeRF
pip install -r requirements.txt
Pytorch and torch_scatter installation is machine dependent, please install the correct version for your machine.
Dependencies (click to expand)
PyTorch
,numpy
,torch_scatter
: main computation.scipy
,lpips
: SSIM and LPIPS evaluation.tqdm
: progress bar.mmcv
: config system.opencv-python
: image processing.imageio
,imageio-ffmpeg
: images and videos I/O.
Directory structure for the datasets (click to expand; only list used files)
data
├── coco # Link: http://cocodataset.org/#download
│ └── [mscoco2017]
│ ├── [train]
│ └── r_*.png
├── nerf_synthetic # Link: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
│ └── [chair|drums|ficus|hotdog|lego|materials|mic|ship]
│ ├── [train|val|test]
│ │ └── r_*.png
│ └── transforms_[train|val|test].json
│
│
└── nerf_llff_data # Link: https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
└── [fern|flower|fortress|horns|leaves|orchids|room|trex]
We use the datasets organized by NeRF. Download links:
- Synthetic-NeRF dataset (manually extract the
nerf_synthetic.zip
todata/
)
We use the LLFF dataset organized by NeRF. Download link: nerf_llff_data.
To train fern
scene and evaluate testset PSNR
at the end of training, run:
$ python run_upst.py --config configs/llff/fern.py --style_img ./style_images/your_image_name.jpg
To only evaluate the trained fern
, run:
$ python run_upst.py --config configs/llff/fern.py --style_img ./style_images/your_image_name.jpg --render_style --render_only --render_test --render_video
We also share some checkpoints for the 3D senes on llff dataset in baidu disk. You can download and put it into "./logs" for evaluation.
link:https://pan.baidu.com/s/18z70qCdRXjm7j1EyCh63Gw
code:1234
Thanks very much for the excellent work of DirectVoxGO, our code base is origined from an awesome DirectVoxGO implementation.