-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
259 lines (222 loc) · 9.36 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
<!DOCTYPE html>
<html>
<head>
<!-- Required meta tags -->
<meta charset="utf-8">
<meta name="description" content="Morphology-Aware Interactive Keypoint Esitmation">
<meta name="keywords" content="Morphology-Aware, InteractiveKeypointEstimation, Keypoint">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift</title>
<!-- Bootstrap CSS -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PYVRSFMDRL"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-PYVRSFMDRL');
</script>
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="./static/css/bulma.min.css">
<link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="./static/css/bulma-slider.min.css">
<link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="./static/css/index.css">
<link rel="icon" href="./static/images/favicon.svg">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="./static/js/fontawesome.all.min.js"></script>
<script src="./static/js/bulma-carousel.min.js"></script>
<script src="./static/js/bulma-slider.min.js"></script>
<script src="./static/js/index.js"></script>
</head>
<body>
<center>
<img src="./ICLR-logo.svg" class="figure-img img-fluid" alt="Responsive image" style="margin:0px 0px;">
</center>
<section class="hero">
<div class="columns is-centered is-max-desktop">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">Reversible Instance Normalization for Accurate Time-Series
Forecasting against Distribution Shift</h1>
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://www.linkedin.com/in/taesung-kim-142a53277">Taesung Kim*</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://sites.google.com/view/jinhee-kim">Jinhee Kim*</a><sup>1</sup>,
</span>
<span class="author-block">
<a href="https://openreview.net/profile?id=~Yunwon_Tae1">Yunwon Tae</a><sup>2</sup>,
</span>
<span class="author-block">
<a href="https://cbokpark.github.io/">Cheonbok Park</a><sup>3</sup>,
</span>
<span class="author-block">
<a href="https://github.com/jangho87">Jang-Ho Choi</a><sup>4</sup>,
</span>
<span class="author-block">
<a href="https://sites.google.com/site/jaegulchoo/">Jaegul Choo</a><sup>1</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup>1</sup>KAIST,</span>
<span class="author-block"><sup>2</sup>VUNO,</span>
<span class="author-block"><sup>3</sup>NAVER Corp.,</span>
<span class="author-block"><sup>4</sup>ETRI</span>
</div>
<center>
<p>*Both authors contributed equally.</p>
</center>
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<a href="https://openreview.net/forum?id=cGDAkQo1C0p"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Paper</span>
</a>
</span>
<!-- Code Link. -->
<span class="link-block">
<a href="https://github.com/ts-kim/revin/" class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
</div>
</div>
</div>
</div>
<div class="columns is-centered">
<img src="./figs/fig1.gif" class="figure-img img-fluid" alt="Responsive image" style="margin:0px 0px;">
</div>
<!-- </section> -->
</section>
<section class="section">
<div class="container is-max-desktop">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Statistical properties such as mean and variance often change over time in time series,
i.e., time-series data suffer from a distribution shift problem. This change in temporal
distribution is one of the main challenges that prevent accurate time-series forecasting.
To address this issue, we propose a simple yet effective normalization method called reversible
instance normalization (RevIN), a generally applicable normalization-and-denormalization method with
learnable affine transformation. The proposed method is symmetrically structured to remove and restore the
statistical information of a time-series instance, leading to significant performance improvements in
time-series forecasting, as shown in Fig. 1. We demonstrate the effectiveness of RevIN via extensive
quantitative and qualitative analyses on various real-world datasets, addressing the distribution shift
problem.
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<div class="content">
<h2 class="title is-3">Poster</h2>
<center>
<figure class="figure">
<img src="./figs/RevIN_Poster_ICLR_2O22.jpg" class="figure-img img-fluid" alt="Responsive image"
style="margin:20px;">
</figure>
</center>
</div>
</div>
</div>
</div>
</section>
<section class="section">
<!-- Supplement matarials -->
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column">
<div class="content">
<h2 class="title is-3">Experimental Results</h2>
<div class="content has-text-justified">
<p>
RevIN can alleviate the distribution discrepancy problem by removing
non-stationary information in the input layer and then restoring it in the output layer. The
analysis is conducted on the ETT and ECL datasets using SCINet (Liu et al., 2021) as the baseline.
</p>
</div>
<center>
<figure class="figure">
<img src="./figs/fig3.PNG" class="figure-img img-fluid" alt="Responsive image" style="margin:20px;">
</figure>
</center>
<div class="content has-text-justified">
<p>
These are prediction results on three variables in the Nasdaq data,
Close, DTB6, and DE1, to verify the effectiveness
of RevIN on obvious non-stationary time series.
</p>
</div>
<center>
<figure class="figure">
<img src="./figs/fig6.PNG" class="figure-img img-fluid" alt="Responsive image" style="margin:20px;">
</figure>
</center>
<div class="content has-text-justified"></div>
<p>
Additional multivariate time-series forecasting results.
</p>
</div>
<center>
<figure class="figure">
<img src="./figs/fig9.jpg" class="figure-img img-fluid" alt="Responsive image" style="margin:20px;">
</figure>
</center>
</div>
</div>
</div>
</div>
<!--/ Supplement matarials -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{
kim2022reversible,
title={Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift},
author={Taesung Kim and
Jinhee Kim and
Yunwon Tae and
Cheonbok Park and
Jang-Ho Choi and
Jaegul Choo},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=cGDAkQo1C0p}
}</code></pre>
</div>
</section>
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
The page template is based on <a href="https://github.com/nerfies/nerfies.github.io">Nerfies GitHub
repository</a> source code.
</p>
</div>
</div>
</div>
</div>
</footer>
</body>
</html>