forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupscaler.cpp
134 lines (121 loc) · 4.83 KB
/
upscaler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include "esrgan.hpp"
#include "ggml_extend.hpp"
#include "model.h"
#include "stable-diffusion.h"
struct UpscalerGGML {
ggml_backend_t backend = NULL; // general backend
ggml_type model_data_type = GGML_TYPE_F16;
std::shared_ptr<ESRGAN> esrgan_upscaler;
std::string esrgan_path;
int n_threads;
UpscalerGGML(int n_threads)
: n_threads(n_threads) {
}
bool load_from_file(const std::string& esrgan_path) {
#ifdef SD_USE_CUBLAS
LOG_DEBUG("Using CUDA backend");
backend = ggml_backend_cuda_init(0);
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN
LOG_DEBUG("Using Vulkan backend");
backend = ggml_backend_vk_init(0);
#endif
#ifdef SD_USE_SYCL
LOG_DEBUG("Using SYCL backend");
backend = ggml_backend_sycl_init(0);
#endif
ModelLoader model_loader;
if (!model_loader.init_from_file(esrgan_path)) {
LOG_ERROR("init model loader from file failed: '%s'", esrgan_path.c_str());
}
model_loader.set_wtype_override(model_data_type);
if (!backend) {
LOG_DEBUG("Using CPU backend");
backend = ggml_backend_cpu_init();
}
LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type));
esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_loader.tensor_storages_types);
if (!esrgan_upscaler->load_from_file(esrgan_path)) {
return false;
}
return true;
}
sd_image_t upscale(sd_image_t input_image, uint32_t upscale_factor) {
// upscale_factor, unused for RealESRGAN_x4plus_anime_6B.pth
sd_image_t upscaled_image = {0, 0, 0, NULL};
int output_width = (int)input_image.width * esrgan_upscaler->scale;
int output_height = (int)input_image.height * esrgan_upscaler->scale;
LOG_INFO("upscaling from (%i x %i) to (%i x %i)",
input_image.width, input_image.height, output_width, output_height);
struct ggml_init_params params;
params.mem_size = output_width * output_height * 3 * sizeof(float) * 2;
params.mem_size += 2 * ggml_tensor_overhead();
params.mem_buffer = NULL;
params.no_alloc = false;
// draft context
struct ggml_context* upscale_ctx = ggml_init(params);
if (!upscale_ctx) {
LOG_ERROR("ggml_init() failed");
return upscaled_image;
}
LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
ggml_tensor* input_image_tensor = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, input_image.width, input_image.height, 3, 1);
sd_image_to_tensor(input_image.data, input_image_tensor);
ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, 3, 1);
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
esrgan_upscaler->compute(n_threads, in, &out);
};
int64_t t0 = ggml_time_ms();
sd_tiling(input_image_tensor, upscaled, esrgan_upscaler->scale, esrgan_upscaler->tile_size, 0.25f, on_tiling);
esrgan_upscaler->free_compute_buffer();
ggml_tensor_clamp(upscaled, 0.f, 1.f);
uint8_t* upscaled_data = sd_tensor_to_image(upscaled);
ggml_free(upscale_ctx);
int64_t t3 = ggml_time_ms();
LOG_INFO("input_image_tensor upscaled, taking %.2fs", (t3 - t0) / 1000.0f);
upscaled_image = {
(uint32_t)output_width,
(uint32_t)output_height,
3,
upscaled_data,
};
return upscaled_image;
}
};
struct upscaler_ctx_t {
UpscalerGGML* upscaler = NULL;
};
upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str,
int n_threads) {
upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t));
if (upscaler_ctx == NULL) {
return NULL;
}
std::string esrgan_path(esrgan_path_c_str);
upscaler_ctx->upscaler = new UpscalerGGML(n_threads);
if (upscaler_ctx->upscaler == NULL) {
return NULL;
}
if (!upscaler_ctx->upscaler->load_from_file(esrgan_path)) {
delete upscaler_ctx->upscaler;
upscaler_ctx->upscaler = NULL;
free(upscaler_ctx);
return NULL;
}
return upscaler_ctx;
}
sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor) {
return upscaler_ctx->upscaler->upscale(input_image, upscale_factor);
}
void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx) {
if (upscaler_ctx->upscaler != NULL) {
delete upscaler_ctx->upscaler;
upscaler_ctx->upscaler = NULL;
}
free(upscaler_ctx);
}