forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtae.hpp
252 lines (203 loc) · 9.07 KB
/
tae.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#ifndef __TAE_HPP__
#define __TAE_HPP__
#include "ggml_extend.hpp"
#include "model.h"
/*
=================================== TinyAutoEncoder ===================================
References:
https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/autoencoders/vae.py
https://github.com/madebyollin/taesd/blob/main/taesd.py
*/
class TAEBlock : public UnaryBlock {
protected:
int n_in;
int n_out;
public:
TAEBlock(int n_in, int n_out)
: n_in(n_in), n_out(n_out) {
blocks["conv.0"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {3, 3}, {1, 1}, {1, 1}));
blocks["conv.2"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
blocks["conv.4"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_out, n_out, {3, 3}, {1, 1}, {1, 1}));
if (n_in != n_out) {
blocks["skip"] = std::shared_ptr<GGMLBlock>(new Conv2d(n_in, n_out, {1, 1}, {1, 1}, {1, 1}, {1, 1}, false));
}
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, n_in, h, w]
// return: [n, n_out, h, w]
auto conv_0 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.0"]);
auto conv_2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.2"]);
auto conv_4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv.4"]);
auto h = conv_0->forward(ctx, x);
h = ggml_relu_inplace(ctx, h);
h = conv_2->forward(ctx, h);
h = ggml_relu_inplace(ctx, h);
h = conv_4->forward(ctx, h);
if (n_in != n_out) {
auto skip = std::dynamic_pointer_cast<Conv2d>(blocks["skip"]);
LOG_DEBUG("skip");
x = skip->forward(ctx, x);
}
h = ggml_add(ctx, h, x);
h = ggml_relu_inplace(ctx, h);
return h;
}
};
class TinyEncoder : public UnaryBlock {
int in_channels = 3;
int channels = 64;
int z_channels = 4;
int num_blocks = 3;
public:
TinyEncoder() {
int index = 0;
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(in_channels, channels, {3, 3}, {1, 1}, {1, 1}));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {2, 2}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, z_channels, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, in_channels, h, w]
// return: [n, z_channels, h/8, w/8]
for (int i = 0; i < num_blocks * 3 + 6; i++) {
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(i)]);
x = block->forward(ctx, x);
}
return x;
}
};
class TinyDecoder : public UnaryBlock {
int z_channels = 4;
int channels = 64;
int out_channels = 3;
int num_blocks = 3;
public:
TinyDecoder(int index = 0) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(z_channels, channels, {3, 3}, {1, 1}, {1, 1}));
index++; // nn.ReLU()
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
for (int i = 0; i < num_blocks; i++) {
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
}
index++; // nn.Upsample()
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, channels, {3, 3}, {1, 1}, {1, 1}, {1, 1}, false));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new TAEBlock(channels, channels));
blocks[std::to_string(index++)] = std::shared_ptr<GGMLBlock>(new Conv2d(channels, out_channels, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* z) {
// z: [n, z_channels, h, w]
// return: [n, out_channels, h*8, w*8]
auto h = ggml_scale(ctx, z, 1.0f / 3.0f);
h = ggml_tanh_inplace(ctx, h);
h = ggml_scale(ctx, h, 3.0f);
for (int i = 0; i < num_blocks * 3 + 10; i++) {
if (blocks.find(std::to_string(i)) == blocks.end()) {
if (i == 1) {
h = ggml_relu_inplace(ctx, h);
} else {
h = ggml_upscale(ctx, h, 2);
}
continue;
}
auto block = std::dynamic_pointer_cast<UnaryBlock>(blocks[std::to_string(i)]);
h = block->forward(ctx, h);
}
return h;
}
};
class TAESD : public GGMLBlock {
protected:
bool decode_only;
public:
TAESD(bool decode_only = true)
: decode_only(decode_only) {
blocks["decoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyDecoder());
if (!decode_only) {
blocks["encoder.layers"] = std::shared_ptr<GGMLBlock>(new TinyEncoder());
}
}
struct ggml_tensor* decode(struct ggml_context* ctx, struct ggml_tensor* z) {
auto decoder = std::dynamic_pointer_cast<TinyDecoder>(blocks["decoder.layers"]);
return decoder->forward(ctx, z);
}
struct ggml_tensor* encode(struct ggml_context* ctx, struct ggml_tensor* x) {
auto encoder = std::dynamic_pointer_cast<TinyEncoder>(blocks["encoder.layers"]);
return encoder->forward(ctx, x);
}
};
struct TinyAutoEncoder : public GGMLRunner {
TAESD taesd;
bool decode_only = false;
TinyAutoEncoder(ggml_backend_t backend,
std::map<std::string, enum ggml_type>& tensor_types,
const std::string prefix,
bool decoder_only = true)
: decode_only(decoder_only),
taesd(decode_only),
GGMLRunner(backend) {
taesd.init(params_ctx, tensor_types, prefix);
}
std::string get_desc() {
return "taesd";
}
bool load_from_file(const std::string& file_path) {
LOG_INFO("loading taesd from '%s', decode_only = %s", file_path.c_str(), decode_only ? "true" : "false");
alloc_params_buffer();
std::map<std::string, ggml_tensor*> taesd_tensors;
taesd.get_param_tensors(taesd_tensors);
std::set<std::string> ignore_tensors;
if (decode_only) {
ignore_tensors.insert("encoder.");
}
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init taesd model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool success = model_loader.load_tensors(taesd_tensors, backend, ignore_tensors);
if (!success) {
LOG_ERROR("load tae tensors from model loader failed");
return false;
}
LOG_INFO("taesd model loaded");
return success;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* z, bool decode_graph) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
z = to_backend(z);
struct ggml_tensor* out = decode_graph ? taesd.decode(compute_ctx, z) : taesd.encode(compute_ctx, z);
ggml_build_forward_expand(gf, out);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* z,
bool decode_graph,
struct ggml_tensor** output,
struct ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(z, decode_graph);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
};
#endif // __TAE_HPP__