-
Notifications
You must be signed in to change notification settings - Fork 4
/
gaussj.cpp
55 lines (54 loc) · 1.73 KB
/
gaussj.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/***********************************************************************
Numerical Recipes routine: gaussj.c for Gauss-Jordan Elimination
Version 3.0, May 17, 2011.
************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "nrutil.h"
#define SWAP(a,b) {double temp=(a);(a)=(b);(b)=temp;}
void gaussj(double **a, int n, double **b, int m)
{
int *indxc, *indxr, *ipiv;
int i, icol, irow, j, k, l, ll;
double big, dum, pivinv;
indxc = ivector(1, n);
indxr = ivector(1, n);
ipiv = ivector(1, n);
for (j = 1; j <= n; j++) ipiv[j] = 0;
for (i = 1; i <= n; i++) {
big = 0.0;
for (j = 1; j <= n; j++) if (ipiv[j] != 1) for (k = 1; k <= n; k++) if (ipiv[k] == 0) {
if (fabs(a[j][k]) >= big) {
big = fabs(a[j][k]);
irow = j;
icol = k;
}
}
else if (ipiv[k] > 1) nrerror("GAUSSJ: Singular Matrix-1");
++(ipiv[icol]);
if (irow != icol) {
for (l = 1; l <= n; l++) SWAP(a[irow][l], a[icol][l])
for (l = 1; l <= m; l++) SWAP(b[irow][l], b[icol][l])
}
indxr[i] = irow;
indxc[i] = icol;
if (a[icol][icol] == 0.0) nrerror("GAUSSJ: Singular Matrix-2");
pivinv = 1.0 / a[icol][icol];
a[icol][icol] = 1.0;
for (l = 1; l <= n; l++) a[icol][l] *= pivinv;
for (l = 1; l <= m; l++) b[icol][l] *= pivinv;
for (ll = 1; ll <= n; ll++) if (ll != icol) {
dum = a[ll][icol];
a[ll][icol] = 0.0;
for (l = 1; l <= n; l++) a[ll][l] -= a[icol][l] * dum;
for (l = 1; l <= m; l++) b[ll][l] -= b[icol][l] * dum;
}
}
for (l = n; l >= 1; l--) if (indxr[l] != indxc[l]) for (k = 1; k <= n; k++) SWAP(a[k][indxr[l]], a[k][indxc[l]]);
free_ivector(ipiv, 1, n);
free_ivector(indxr, 1, n);
free_ivector(indxc, 1, n);
}
#undef SWAP