-
Notifications
You must be signed in to change notification settings - Fork 58
/
train_dist.py
147 lines (119 loc) · 4.22 KB
/
train_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from math import ceil
from random import Random
from torch.multiprocessing import Process
from torch.autograd import Variable
from torchvision import datasets, transforms
class Partition(object):
""" Dataset-like object, but only access a subset of it. """
def __init__(self, data, index):
self.data = data
self.index = index
def __len__(self):
return len(self.index)
def __getitem__(self, index):
data_idx = self.index[index]
return self.data[data_idx]
class DataPartitioner(object):
""" Partitions a dataset into different chuncks. """
def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):
self.data = data
self.partitions = []
rng = Random()
rng.seed(seed)
data_len = len(data)
indexes = [x for x in range(0, data_len)]
rng.shuffle(indexes)
for frac in sizes:
part_len = int(frac * data_len)
self.partitions.append(indexes[0:part_len])
indexes = indexes[part_len:]
def use(self, partition):
return Partition(self.data, self.partitions[partition])
class Net(nn.Module):
""" Network architecture. """
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
def partition_dataset():
""" Partitioning MNIST """
dataset = datasets.MNIST(
'./data',
train=True,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
]))
size = dist.get_world_size()
bsz = 128 // size
partition_sizes = [1.0 / size for _ in range(size)]
partition = DataPartitioner(dataset, partition_sizes)
partition = partition.use(dist.get_rank())
train_set = torch.utils.data.DataLoader(
partition, batch_size=bsz, shuffle=True)
return train_set, bsz
def average_gradients(model):
""" Gradient averaging. """
size = float(dist.get_world_size())
for param in model.parameters():
if type(param) is torch.Tensor:
dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM, group=0)
param.grad.data /= size
def run(rank, size):
""" Distributed Synchronous SGD Example """
torch.manual_seed(1234)
train_set, bsz = partition_dataset()
model = Net()
model = model
# model = model.cuda(rank)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
num_batches = ceil(len(train_set.dataset) / float(bsz))
for epoch in range(10):
epoch_loss = 0.0
for data, target in train_set:
data, target = Variable(data), Variable(target)
# data, target = Variable(data.cuda(rank)), Variable(target.cuda(rank))
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
epoch_loss += loss
loss.backward()
average_gradients(model)
optimizer.step()
print('Rank ',
dist.get_rank(), ', epoch ', epoch, ': ',
epoch_loss / num_batches)
def init_processes(rank, size, fn, backend='gloo'):
""" Initialize the distributed environment. """
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group(backend, rank=rank, world_size=size)
fn(rank, size)
if __name__ == "__main__":
size = 2
processes = []
for rank in range(size):
p = Process(target=init_processes, args=(rank, size, run))
p.start()
processes.append(p)
for p in processes:
p.join()